Properties

Label 12T292
Order \(41472\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $292$
CHM label :  $[S(4)^{3}]3=S(4)wr3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,6,9,12), (6,9), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$
24:  $A_4\times C_2$
648:  $S_3 \wr C_3 $

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 4: None

Degree 6: None

Low degree siblings

18T702 x 2, 18T703, 18T706 x 2, 18T707, 18T708, 18T709, 24T14599 x 2, 24T14600, 24T14601 x 2, 24T14602, 24T14603, 36T15293 x 2, 36T15294 x 2, 36T15295 x 2, 36T15296 x 2, 36T15298 x 2, 36T15299 x 2, 36T15300 x 2, 36T15301 x 2, 36T15316, 36T15317, 36T15318 x 2, 36T15324, 36T15325, 36T15326, 36T15327, 36T15334, 36T15335, 36T15336 x 2, 36T15793, 36T15794, 36T15795 x 2, 36T15804 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $41472=2^{9} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.