Properties

Label 12T289
Order \(31104\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $289$
CHM label :  $[S(3)^{4}]S(4)=S(3)wrS(4)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (4,8), (1,10)(2,5)(6,9), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$
192:  $V_4^2:(S_3\times C_2)$
384:  $C_2 \wr S_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 4: $S_4$

Degree 6: None

Low degree siblings

24T14025, 24T14026, 24T14027, 24T14028, 24T14029, 24T14030, 24T14031, 24T14032, 24T14043, 36T13625, 36T13642

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 51 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $31104=2^{7} \cdot 3^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.