Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $285$ | |
| CHM label : | $[2^{5}]S(6)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,3)(2,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 720: $S_6$ 11520: 16T1753 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: $S_6$
Low degree siblings
12T285, 20T531 x 4, 24T12618, 32T1120025 x 4, 40T14226 x 2, 40T14229, 40T14232 x 2, 40T14235, 40T14236 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 1,12)( 2, 3)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $30$ | $2$ | $( 8,10)( 9,11)$ |
| $ 4, 2, 1, 1, 1, 1, 1, 1 $ | $120$ | $4$ | $( 1,12)( 8,11, 9,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $180$ | $2$ | $( 1,12)( 2, 3)( 8,10)( 9,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $120$ | $4$ | $( 1,12)( 2, 3)( 4, 5)( 8,11, 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $30$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8,10)( 9,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $160$ | $3$ | $( 6, 8,10)( 7, 9,11)$ |
| $ 6, 2, 1, 1, 1, 1 $ | $480$ | $6$ | $( 1,12)( 6, 8,11, 7, 9,10)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $480$ | $6$ | $( 1,12)( 2, 3)( 6, 8,10)( 7, 9,11)$ |
| $ 6, 2, 2, 2 $ | $160$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 8,11, 7, 9,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $180$ | $2$ | $( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $720$ | $4$ | $( 1,12)( 4, 6)( 5, 7)( 8,11, 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $180$ | $2$ | $( 1,12)( 2, 3)( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $180$ | $4$ | $( 4, 6, 5, 7)( 8,11, 9,10)$ |
| $ 4, 4, 2, 2 $ | $180$ | $4$ | $( 1,12)( 2, 3)( 4, 6, 5, 7)( 8,11, 9,10)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $720$ | $4$ | $( 4, 6, 8,10)( 5, 7, 9,11)$ |
| $ 8, 2, 1, 1 $ | $1440$ | $8$ | $( 1,12)( 4, 6, 8,11, 5, 7, 9,10)$ |
| $ 4, 4, 2, 2 $ | $720$ | $4$ | $( 1,12)( 2, 3)( 4, 6, 8,10)( 5, 7, 9,11)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $960$ | $6$ | $( 2, 4)( 3, 5)( 6, 8,10)( 7, 9,11)$ |
| $ 6, 2, 2, 2 $ | $960$ | $6$ | $( 1,12)( 2, 4)( 3, 5)( 6, 8,11, 7, 9,10)$ |
| $ 6, 4, 1, 1 $ | $960$ | $12$ | $( 2, 4, 3, 5)( 6, 8,11, 7, 9,10)$ |
| $ 4, 3, 3, 2 $ | $960$ | $12$ | $( 1,12)( 2, 4, 3, 5)( 6, 8,10)( 7, 9,11)$ |
| $ 5, 5, 1, 1 $ | $2304$ | $5$ | $( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)$ |
| $ 10, 2 $ | $2304$ | $10$ | $( 1,12)( 2, 4, 6, 8,11, 3, 5, 7, 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 3)( 2,12)( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 3)( 2,12)( 4, 6)( 5, 7)( 8,11)( 9,10)$ |
| $ 4, 4, 2, 2 $ | $360$ | $4$ | $( 1, 3,12, 2)( 4, 6)( 5, 7)( 8,11, 9,10)$ |
| $ 4, 4, 2, 2 $ | $720$ | $4$ | $( 1, 3)( 2,12)( 4, 6, 8,10)( 5, 7, 9,11)$ |
| $ 4, 4, 2, 2 $ | $720$ | $4$ | $( 1, 3)( 2,12)( 4, 6, 9,10)( 5, 7, 8,11)$ |
| $ 8, 4 $ | $1440$ | $8$ | $( 1, 3,12, 2)( 4, 6, 8,11, 5, 7, 9,10)$ |
| $ 3, 3, 3, 3 $ | $640$ | $3$ | $( 1, 3, 5)( 2, 4,12)( 6, 8,10)( 7, 9,11)$ |
| $ 6, 6 $ | $640$ | $6$ | $( 1, 3, 5,12, 2, 4)( 6, 8,11, 7, 9,10)$ |
| $ 6, 6 $ | $1920$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 6 $ | $1920$ | $6$ | $( 1, 3, 5, 7, 8,11)( 2, 4, 6, 9,10,12)$ |
Group invariants
| Order: | $23040=2^{9} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |