Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $281$ | |
| CHM label : | $[3^{4}:2^{3}]S(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (4,8)(7,11), (2,11)(3,6)(7,10), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ x 3 96: $V_4^2:S_3$ 192: $C_2^3:S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: $S_4$
Degree 6: None
Low degree siblings
12T281 x 2, 24T12156 x 3, 24T12157 x 3, 24T12158 x 3, 24T12163 x 3, 36T10170 x 3, 36T10209Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $24$ | $3$ | $( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $32$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $54$ | $2$ | $( 7,11)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $216$ | $6$ | $( 2,10, 6)( 7,11)( 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $216$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $54$ | $2$ | $( 1,10)( 2, 5)( 3,12)( 4, 7)( 6, 9)( 8,11)$ |
| $ 6, 2, 2, 2 $ | $216$ | $6$ | $( 1,10)( 2, 5)( 3, 8,11, 4, 7,12)( 6, 9)$ |
| $ 6, 6 $ | $216$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3, 8,11, 4, 7,12)$ |
| $ 6, 2, 2, 2 $ | $216$ | $6$ | $( 1,10)( 2, 5)( 3, 8, 7, 4,11,12)( 6, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $54$ | $2$ | $( 1,10)( 2, 5)( 3,12)( 4,11)( 6, 9)( 7, 8)$ |
| $ 6, 6 $ | $216$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3, 8, 7, 4,11,12)$ |
| $ 4, 4, 2, 2 $ | $972$ | $4$ | $( 1, 6, 9,10)( 2, 5)( 3, 8,11,12)( 4, 7)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $288$ | $3$ | $( 1,10, 7)( 2,11, 5)( 3, 9, 6)$ |
| $ 3, 3, 3, 3 $ | $576$ | $3$ | $( 1,10, 7)( 2,11, 5)( 3, 9, 6)( 4,12, 8)$ |
| $ 9, 1, 1, 1 $ | $576$ | $9$ | $( 1,10, 3, 9, 6,11, 5, 2, 7)$ |
| $ 9, 3 $ | $576$ | $9$ | $( 1,10, 3, 9, 6,11, 5, 2, 7)( 4,12, 8)$ |
| $ 9, 3 $ | $576$ | $9$ | $( 1,10, 3, 9, 6,11, 5, 2, 7)( 4, 8,12)$ |
| $ 6, 3, 2, 1 $ | $2592$ | $6$ | $( 1,10,11, 5, 2, 7)( 3, 9, 6)( 8,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $36$ | $2$ | $( 1,10)( 2, 5)( 6, 9)$ |
| $ 3, 2, 2, 2, 1, 1, 1 $ | $144$ | $6$ | $( 1,10)( 2, 5)( 4,12, 8)( 6, 9)$ |
| $ 3, 3, 2, 2, 2 $ | $72$ | $6$ | $( 1,10)( 2, 5)( 3,11, 7)( 4,12, 8)( 6, 9)$ |
| $ 3, 3, 2, 2, 2 $ | $72$ | $6$ | $( 1,10)( 2, 5)( 3,11, 7)( 4, 8,12)( 6, 9)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 1, 6, 9, 2, 5,10)$ |
| $ 6, 3, 1, 1, 1 $ | $288$ | $6$ | $( 1, 6, 9, 2, 5,10)( 4,12, 8)$ |
| $ 6, 3, 3 $ | $144$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3,11, 7)( 4,12, 8)$ |
| $ 6, 3, 3 $ | $144$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3,11, 7)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $324$ | $2$ | $( 1,10)( 2, 5)( 6, 9)( 7,11)( 8,12)$ |
| $ 6, 2, 2, 1, 1 $ | $648$ | $6$ | $( 1, 6, 9, 2, 5,10)( 7,11)( 8,12)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $648$ | $4$ | $( 1, 6, 9,10)( 2, 5)( 8,12)$ |
| $ 4, 3, 2, 2, 1 $ | $1296$ | $12$ | $( 1, 6, 9,10)( 2, 5)( 3,11, 7)( 8,12)$ |
| $ 4, 4, 4 $ | $648$ | $4$ | $( 1, 7,10, 4)( 2, 8, 5,11)( 3, 6,12, 9)$ |
| $ 12 $ | $1296$ | $12$ | $( 1, 7,10,12, 9, 3, 6, 8, 5,11, 2, 4)$ |
| $ 12 $ | $1296$ | $12$ | $( 1, 7, 6, 8, 5,11, 2,12, 9, 3,10, 4)$ |
| $ 4, 4, 4 $ | $648$ | $4$ | $( 1, 7, 6, 4)( 2, 8, 5,11)( 3,10,12, 9)$ |
Group invariants
| Order: | $15552=2^{6} \cdot 3^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |