Properties

Label 12T274
Order \(10368\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $274$
CHM label :  $[S(3)^{4}]D(4)=S(3)wrD(4)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7)(3,9)(5,11), (4,8), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
64:  $(((C_4 \times C_2): C_2):C_2):C_2$
128:  $C_2 \wr C_2\wr C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $D_{4}$

Degree 6: None

Low degree siblings

12T274, 18T555, 24T10135 x 2, 24T10136 x 2, 24T10137 x 2, 24T10138 x 2, 24T10139 x 2, 24T10140 x 2, 24T10141 x 2, 24T10142 x 2, 24T10143 x 2, 24T10144 x 2, 24T10145 x 2, 24T10146 x 2, 24T10147 x 2, 24T10148 x 2, 24T10149 x 2, 24T10165 x 2, 36T8977, 36T8978, 36T8979, 36T8980 x 2, 36T8981 x 2, 36T8982 x 2, 36T8983 x 2, 36T8984 x 2, 36T8985 x 2, 36T9087 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10368=2^{7} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.