Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $27$ | |
| Group : | $A_4:C_4$ | |
| CHM label : | $[2]S_{4}(6)_{2}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,5)(2,4,3)(6,8,7)(10,12,11), (1,7)(2,11)(3,12)(4,10)(5,8)(6,9), (1,11,6)(2,9,7)(3,10,5)(4,8,12), (1,4,7,10)(2,3,11,12)(5,6,8,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 6: $S_3$ 12: $C_3 : C_4$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T30, 16T62, 24T51, 24T57Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 2, 1, 1 $ | $6$ | $4$ | $( 2, 3, 5, 6)( 4,10)( 8, 9,11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 4, 4, 2, 1, 1 $ | $6$ | $4$ | $( 2, 6, 5, 3)( 4,10)( 8,12,11, 9)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2, 6, 7,11, 9)( 3, 4, 5,12,10, 8)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7,11)( 3, 6,12, 9)( 4, 8,10, 5)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2,12)( 3, 7,11)( 4, 5, 6)( 8, 9,10)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 3,11,12)( 5, 6, 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2,11)( 3,12)( 4,10)( 5, 8)( 6, 9)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 30] |
| Character table: |
2 4 3 4 3 1 3 1 3 4 4
3 1 . . . 1 . 1 . . 1
1a 4a 2a 4b 6a 4c 3a 4d 2b 2c
2P 1a 2a 1a 2a 3a 2c 3a 2c 1a 1a
3P 1a 4b 2a 4a 2c 4d 1a 4c 2b 2c
5P 1a 4a 2a 4b 6a 4c 3a 4d 2b 2c
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 1
X.3 1 A -1 -A -1 A 1 -A 1 -1
X.4 1 -A -1 A -1 -A 1 A 1 -1
X.5 2 . -2 . 1 . -1 . 2 -2
X.6 2 . 2 . -1 . -1 . 2 2
X.7 3 -1 -1 -1 . 1 . 1 -1 3
X.8 3 1 -1 1 . -1 . -1 -1 3
X.9 3 A 1 -A . -A . A -1 -3
X.10 3 -A 1 A . A . -A -1 -3
A = -E(4)
= -Sqrt(-1) = -i
|