Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $261$ | |
| CHM label : | $[S(3)^{4}]E(4)=S(3)wrE(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (4,8), (4,8,12), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Low degree siblings
12T267 x 3, 18T481 x 3, 24T7723, 24T7724 x 3, 24T7725 x 3, 24T7726 x 3, 24T7727 x 3, 24T7728, 24T7729, 24T7762 x 3, 24T7763 x 3, 24T7764 x 3, 24T7765 x 3, 24T7766 x 3, 24T7767 x 3, 24T7768 x 3, 24T7782, 36T6224 x 3, 36T6225 x 3, 36T6226 x 3, 36T6227 x 3, 36T6228 x 3, 36T6229 x 3, 36T6230 x 3, 36T6290 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3,11, 7)( 4, 8,12)$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $32$ | $3$ | $( 1, 9, 5)( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 3, 7,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1,10)( 2, 5)( 3,12)( 4, 7)( 6, 9)( 8,11)$ |
| $ 6, 2, 2, 2 $ | $144$ | $6$ | $( 1,10)( 2, 5)( 3, 4, 7, 8,11,12)( 6, 9)$ |
| $ 6, 6 $ | $144$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 7,11)( 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $72$ | $6$ | $( 1, 9, 5)( 2, 6,10)( 7,11)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 2, 6,10)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 8,12)$ |
| $ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $6$ | $( 3,11, 7)( 4, 8)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 1, 9, 5)( 2, 6,10)( 8,12)$ |
| $ 3, 3, 3, 2, 1 $ | $96$ | $6$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8)$ |
| $ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $6$ | $( 2, 6,10)( 8,12)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 2, 6,10)( 3,11, 7)( 4, 8)$ |
| $ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $6$ | $( 1, 5, 9)( 8,12)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 1, 5, 9)( 3,11, 7)( 4, 8)$ |
| $ 4, 2, 2, 2, 2 $ | $216$ | $4$ | $( 1,10)( 2, 5)( 3,12,11, 8)( 4, 7)( 6, 9)$ |
| $ 6, 4, 2 $ | $432$ | $12$ | $( 1, 2, 5, 6, 9,10)( 3,12,11, 8)( 4, 7)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $108$ | $2$ | $( 5, 9)( 6,10)( 8,12)$ |
| $ 3, 2, 2, 2, 1, 1, 1 $ | $216$ | $6$ | $( 3,11, 7)( 4, 8)( 5, 9)( 6,10)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 6,10)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 3,11, 7)( 4, 8)( 6,10)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $72$ | $6$ | $( 1, 9, 5)( 2, 6)( 3,11, 7)( 4, 8)$ |
| $ 4, 4, 2, 2 $ | $324$ | $4$ | $( 1,10, 9, 6)( 2, 5)( 3,12,11, 8)( 4, 7)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 6,10)( 7,11)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 3,11)( 4, 8,12)( 6,10)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $72$ | $6$ | $( 1, 9, 5)( 2, 6)( 3,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 6, 6 $ | $144$ | $6$ | $( 1, 3, 9,11, 5, 7)( 2,12, 6, 4,10, 8)$ |
| $ 6, 2, 2, 2 $ | $144$ | $6$ | $( 1, 7)( 2,12, 6, 4,10, 8)( 3, 9)( 5,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 6, 6 $ | $144$ | $6$ | $( 1, 8, 5,12, 9, 4)( 2, 7,10, 3, 6,11)$ |
| $ 6, 2, 2, 2 $ | $144$ | $6$ | $( 1, 8, 5,12, 9, 4)( 2,11)( 3, 6)( 7,10)$ |
| $ 4, 4, 2, 2 $ | $324$ | $4$ | $( 1,11, 5, 7)( 2,12, 6, 8)( 3, 9)( 4,10)$ |
| $ 4, 4, 2, 2 $ | $324$ | $4$ | $( 1, 8, 5, 4)( 2, 3, 6,11)( 7,10)( 9,12)$ |
| $ 4, 2, 2, 2, 2 $ | $216$ | $4$ | $( 1, 7)( 2,12, 6, 8)( 3, 9)( 4,10)( 5,11)$ |
| $ 6, 4, 2 $ | $432$ | $12$ | $( 1, 3, 9,11, 5, 7)( 2, 4,10, 8)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $216$ | $4$ | $( 1, 4)( 2, 3, 6,11)( 5, 8)( 7,10)( 9,12)$ |
| $ 6, 4, 2 $ | $432$ | $12$ | $( 1, 8, 5,12, 9, 4)( 2,11)( 3, 6, 7,10)$ |
Group invariants
| Order: | $5184=2^{6} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |