Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $C_2^2 \times A_4$ | |
| CHM label : | $A_{4}(12)x2^{2}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,5)(2,4,3)(6,8,7)(10,12,11), (1,4)(2,5)(3,9)(6,12)(7,10)(8,11), (1,7)(2,11)(3,12)(4,10)(5,8)(6,9), (1,11,6)(2,9,7)(3,10,5)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 12: $A_4$, $C_6\times C_2$ 24: $A_4\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4\times C_2$ x 3
Low degree siblings
12T25 x 3, 12T26, 16T58, 24T49 x 3, 24T50Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3,12)( 5,11)( 6, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,11)( 3, 9)( 5, 8)( 6,12)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 2, 3,10, 8, 6)( 4, 5, 9, 7,11,12)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 2, 6, 7,11, 9)( 3, 4, 5,12,10, 8)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 2, 9, 4, 5, 3)( 6,10, 8,12, 7,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2,12)( 3, 7,11)( 4, 5, 6)( 8, 9,10)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 4, 9, 2)( 6,11, 7,12, 8,10)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3,11,10, 6, 5)( 2, 4, 9, 8, 7,12)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 2, 7,12,11)( 4, 9, 5,10, 6, 8)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 8)( 2,10, 6)( 4, 9,11)( 5, 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 5)( 3, 9)( 6,12)( 7,10)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2,11)( 3,12)( 4,10)( 5, 8)( 6, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 8)( 3, 6)( 4, 7)( 5,11)( 9,12)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 49] |
| Character table: |
2 4 4 4 4 2 2 2 2 2 2 2 2 4 4 4 4
3 1 . . . 1 1 1 1 1 1 1 1 1 . 1 1
1a 2a 2b 2c 6a 6b 6c 3a 6d 6e 6f 3b 2d 2e 2f 2g
2P 1a 1a 1a 1a 3b 3b 3b 3b 3a 3a 3a 3a 1a 1a 1a 1a
3P 1a 2a 2b 2c 2g 2f 2d 1a 2d 2g 2f 1a 2d 2e 2f 2g
5P 1a 2a 2b 2c 6e 6f 6d 3b 6c 6a 6b 3a 2d 2e 2f 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1
X.3 1 -1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1
X.4 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 -1
X.5 1 -1 -1 1 A -A -A A -/A /A -/A /A -1 1 -1 1
X.6 1 -1 -1 1 /A -/A -/A /A -A A -A A -1 1 -1 1
X.7 1 -1 1 -1 -/A -/A /A /A A -A -A A 1 1 -1 -1
X.8 1 -1 1 -1 -A -A A A /A -/A -/A /A 1 1 -1 -1
X.9 1 1 -1 -1 -/A /A -/A /A -A -A A A -1 1 1 -1
X.10 1 1 -1 -1 -A A -A A -/A -/A /A /A -1 1 1 -1
X.11 1 1 1 1 A A A A /A /A /A /A 1 1 1 1
X.12 1 1 1 1 /A /A /A /A A A A A 1 1 1 1
X.13 3 -1 -1 -1 . . . . . . . . 3 -1 3 3
X.14 3 -1 1 1 . . . . . . . . -3 -1 3 -3
X.15 3 1 -1 1 . . . . . . . . 3 -1 -3 -3
X.16 3 1 1 -1 . . . . . . . . -3 -1 -3 3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|