Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $258$ | |
| CHM label : | $[3^{4}:2]S(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(2,5)(6,9), (1,5)(2,10)(4,8)(7,11), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 24: $S_4$ 36: $S_3^2$ 48: $S_4\times C_2$ 144: 12T83 1296: $S_3\wr S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: $S_4$
Degree 6: None
Low degree siblings
12T258, 18T448, 24T7264 x 2, 24T7265 x 2, 24T7266 x 2, 24T7271 x 2, 27T532, 36T4795, 36T4796, 36T4797 x 2, 36T4798 x 2, 36T4799, 36T4817, 36T4821 x 2, 36T4952Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 2, 6,10)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 6, 6 $ | $54$ | $6$ | $( 1,12, 9, 8, 5, 4)( 2,11, 6, 3,10, 7)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $72$ | $3$ | $( 2,11, 8)( 3,12, 6)( 4,10, 7)$ |
| $ 9, 3 $ | $144$ | $9$ | $( 1, 5, 9)( 2, 7,12,10, 3, 8, 6,11, 4)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3,12)( 4, 7)( 8,11)$ |
| $ 6, 3, 3 $ | $36$ | $6$ | $( 1, 5, 9)( 2, 6,10)( 3, 8, 7,12,11, 4)$ |
| $ 6, 3, 1, 1, 1 $ | $72$ | $6$ | $( 2, 6,10)( 3, 8,11, 4, 7,12)$ |
| $ 3, 3, 2, 2, 2 $ | $36$ | $6$ | $( 1, 5, 9)( 2,10, 6)( 3, 4)( 7, 8)(11,12)$ |
| $ 4, 4, 4 $ | $162$ | $4$ | $( 1, 4,10, 7)( 2,11, 5, 8)( 3, 9,12, 6)$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $24$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3, 7,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 6, 2, 2, 2 $ | $108$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2,11)( 3, 6)( 7,10)$ |
| $ 6, 6 $ | $54$ | $6$ | $( 1,12, 5, 4, 9, 8)( 2,11, 6, 3,10, 7)$ |
| $ 9, 1, 1, 1 $ | $144$ | $9$ | $( 2,11, 8,10, 7, 4, 6, 3,12)$ |
| $ 9, 3 $ | $144$ | $9$ | $( 1, 5, 9)( 2, 7,12, 6,11, 4,10, 3, 8)$ |
| $ 3, 3, 3, 3 $ | $144$ | $3$ | $( 1, 9, 5)( 2, 3, 4)( 6, 7, 8)(10,11,12)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 3,12,11, 8, 7, 4)$ |
| $ 3, 3, 2, 2, 2 $ | $36$ | $6$ | $( 1, 5, 9)( 2, 6,10)( 3, 8)( 4,11)( 7,12)$ |
| $ 6, 3, 3 $ | $36$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 3, 4, 7, 8,11,12)$ |
| $ 6, 3, 1, 1, 1 $ | $72$ | $6$ | $( 2, 6,10)( 3, 8, 7,12,11, 4)$ |
| $ 6, 3, 3 $ | $72$ | $6$ | $( 1, 5, 9)( 2,10, 6)( 3, 4,11,12, 7, 8)$ |
| $ 3, 2, 2, 2, 1, 1, 1 $ | $72$ | $6$ | $( 1, 9, 5)( 3,12)( 4, 7)( 8,11)$ |
| $ 12 $ | $324$ | $12$ | $( 1, 4, 6, 3, 9,12, 2,11, 5, 8,10, 7)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 6, 2, 2, 2 $ | $108$ | $6$ | $( 1, 4)( 2,11,10, 3, 6, 7)( 5,12)( 8, 9)$ |
| $ 6, 6 $ | $108$ | $6$ | $( 1,12, 9, 4, 5, 8)( 2, 7, 6, 3,10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 8)( 2,11)( 3,10)( 4, 5)( 6, 7)( 9,12)$ |
| $ 6, 3, 2, 1 $ | $648$ | $6$ | $( 2,11, 4,10, 3,12)( 5, 9)( 6, 7, 8)$ |
| $ 6, 2, 2, 1, 1 $ | $324$ | $6$ | $( 3,12,11, 4, 7, 8)( 5, 9)( 6,10)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $162$ | $2$ | $( 2, 6)( 3, 8)( 4, 7)( 5, 9)(11,12)$ |
| $ 12 $ | $324$ | $12$ | $( 1, 4,10, 3, 9, 8, 6, 7, 5,12, 2,11)$ |
| $ 4, 4, 4 $ | $162$ | $4$ | $( 1,12, 6, 3)( 2, 7, 9, 4)( 5, 8,10,11)$ |
Group invariants
| Order: | $3888=2^{4} \cdot 3^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |