Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $254$ | |
| CHM label : | $[1/3.A(4)^{3}]S(3)_{6}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,6,12)(4,10,7), (3,12)(6,9), (3,9)(6,12), (1,5)(2,7)(4,8)(6,9)(10,11), (1,6)(3,7)(4,12)(8,11)(9,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 54: $(C_9:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: None
Low degree siblings
18T433, 18T434, 24T7219, 36T4273, 36T4541, 36T4567, 36T4569, 36T4571, 36T4575Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,12)( 6, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $27$ | $2$ | $( 1, 7)( 3,12)( 4,10)( 6, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 7)( 2, 5)( 3,12)( 4,10)( 6, 9)( 8,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $48$ | $3$ | $( 4,10, 7)( 6, 9,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 2, 5)( 4,10, 7)( 6, 9,12)( 8,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $48$ | $3$ | $( 4, 7,10)( 6,12, 9)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 2, 5)( 4, 7,10)( 6,12, 9)( 8,11)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $128$ | $3$ | $( 4, 7,10)( 5,11, 8)( 6, 9,12)$ |
| $ 9, 3 $ | $384$ | $9$ | $( 1,12, 5, 4, 6,11,10, 9, 8)( 2, 7, 3)$ |
| $ 9, 3 $ | $384$ | $9$ | $( 1, 6,11, 7, 3, 2, 4, 9, 8)( 5,10,12)$ |
| $ 9, 3 $ | $384$ | $9$ | $( 1, 9, 8)( 2,10, 6,11, 4,12, 5, 7, 3)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $72$ | $2$ | $( 1, 5)( 2, 7)( 4, 8)( 6, 9)(10,11)$ |
| $ 4, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 5)( 2, 7)( 3, 6,12, 9)( 4, 8)(10,11)$ |
| $ 4, 4, 2, 1, 1 $ | $216$ | $4$ | $( 1, 5, 7, 2)( 4, 8,10,11)( 6, 9)$ |
| $ 4, 4, 4 $ | $216$ | $4$ | $( 1, 5, 7, 2)( 3, 6,12, 9)( 4, 8,10,11)$ |
| $ 6, 2, 2, 1, 1 $ | $288$ | $6$ | $( 1, 5)( 2, 4, 8,10,11, 7)( 6,12)$ |
| $ 6, 4, 2 $ | $288$ | $12$ | $( 1, 5)( 2, 4, 8,10,11, 7)( 3,12, 9, 6)$ |
| $ 6, 2, 2, 1, 1 $ | $288$ | $6$ | $( 1, 5)( 2,10,11, 4, 8, 7)( 9,12)$ |
| $ 6, 4, 2 $ | $288$ | $12$ | $( 1, 5)( 2,10,11, 4, 8, 7)( 3,12, 6, 9)$ |
Group invariants
| Order: | $3456=2^{7} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: |
2 7 7 7 7 3 3 3 3 . . . . 4 4 4 4 2 2 2 2
3 3 1 . . 2 1 2 1 3 2 2 2 1 1 . . 1 1 1 1
1a 2a 2b 2c 3a 6a 3b 6b 3c 9a 9b 9c 2d 4a 4b 4c 6c 12a 6d 12b
2P 1a 1a 1a 1a 3b 3b 3a 3a 3c 9a 9c 9b 1a 2a 2b 2c 3b 6b 3a 6a
3P 1a 2a 2b 2c 1a 2a 1a 2a 1a 3c 3c 3c 2d 4a 4b 4c 2d 4a 2d 4a
5P 1a 2a 2b 2c 3b 6b 3a 6a 3c 9a 9c 9b 2d 4a 4b 4c 6d 12b 6c 12a
7P 1a 2a 2b 2c 3a 6a 3b 6b 3c 9a 9b 9c 2d 4a 4b 4c 6c 12a 6d 12b
11P 1a 2a 2b 2c 3b 6b 3a 6a 3c 9a 9c 9b 2d 4a 4b 4c 6d 12b 6c 12a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
X.3 1 1 1 1 A A /A /A 1 1 A /A -1 -1 -1 -1 -A -A -/A -/A
X.4 1 1 1 1 /A /A A A 1 1 /A A -1 -1 -1 -1 -/A -/A -A -A
X.5 1 1 1 1 A A /A /A 1 1 A /A 1 1 1 1 A A /A /A
X.6 1 1 1 1 /A /A A A 1 1 /A A 1 1 1 1 /A /A A A
X.7 2 2 2 2 2 2 2 2 2 -1 -1 -1 . . . . . . . .
X.8 2 2 2 2 B B /B /B 2 -1 -/A -A . . . . . . . .
X.9 2 2 2 2 /B /B B B 2 -1 -A -/A . . . . . . . .
X.10 6 6 6 6 . . . . -3 . . . . . . . . . . .
X.11 9 5 1 -3 3 -1 3 -1 . . . . -1 1 -1 1 -1 1 -1 1
X.12 9 5 1 -3 3 -1 3 -1 . . . . 1 -1 1 -1 1 -1 1 -1
X.13 9 5 1 -3 C -A /C -/A . . . . -1 1 -1 1 -A A -/A /A
X.14 9 5 1 -3 /C -/A C -A . . . . -1 1 -1 1 -/A /A -A A
X.15 9 5 1 -3 C -A /C -/A . . . . 1 -1 1 -1 A -A /A -/A
X.16 9 5 1 -3 /C -/A C -A . . . . 1 -1 1 -1 /A -/A A -A
X.17 27 -9 3 -1 . . . . . . . . -3 3 1 -1 . . . .
X.18 27 -9 3 -1 . . . . . . . . 3 -3 -1 1 . . . .
X.19 27 3 -5 3 . . . . . . . . -3 -3 1 1 . . . .
X.20 27 3 -5 3 . . . . . . . . 3 3 -1 -1 . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
C = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|