Properties

Label 12T240
Order \(2304\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $240$
CHM label :  $[2^{6}]F_{18}:2=2wrF_{18}(6):2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12), (1,5,9)(4,8,12), (2,10)(3,11)(4,8)(5,9), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$ x 2
8:  $D_{4}$ x 2, $C_2^3$
12:  $D_{6}$ x 6
16:  $D_4\times C_2$
24:  $S_3 \times C_2^2$ x 2
36:  $S_3^2$
48:  12T28 x 2
72:  12T37
144:  12T81
576:  $(A_4\wr C_2):C_2$
1152:  12T195

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: None

Degree 6: $S_3^2$

Low degree siblings

12T240 x 3, 16T1498 x 4, 24T5064 x 2, 24T5132 x 2, 24T5133 x 4, 24T5134 x 4, 24T5135 x 4, 24T5136 x 4, 24T5137 x 2, 24T5138 x 2, 32T205440 x 2, 32T205441 x 2, 32T205442 x 2, 36T3098 x 2, 36T3100 x 4, 36T3163 x 2, 36T3436 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 1,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1,12)( 6, 7)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 1,12)( 4, 5)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $18$ $2$ $( 1,12)( 4, 5)( 6, 7)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $9$ $2$ $( 1,12)( 4, 5)( 6, 7)(10,11)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 1,12)( 4, 5)( 8, 9)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $6$ $2$ $( 1,12)( 4, 5)( 6, 7)( 8, 9)$
$ 2, 2, 2, 2, 2, 1, 1 $ $6$ $2$ $( 1,12)( 4, 5)( 6, 7)( 8, 9)(10,11)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $16$ $3$ $( 1, 5, 9)( 4, 8,12)$
$ 6, 1, 1, 1, 1, 1, 1 $ $16$ $6$ $( 1, 5, 9,12, 4, 8)$
$ 3, 3, 2, 1, 1, 1, 1 $ $48$ $6$ $( 1, 5, 9)( 4, 8,12)( 6, 7)$
$ 6, 2, 1, 1, 1, 1 $ $48$ $6$ $( 1, 5, 9,12, 4, 8)( 6, 7)$
$ 3, 3, 2, 2, 1, 1 $ $48$ $6$ $( 1, 5, 9)( 4, 8,12)( 6, 7)(10,11)$
$ 6, 2, 2, 1, 1 $ $48$ $6$ $( 1, 5, 9,12, 4, 8)( 6, 7)(10,11)$
$ 3, 3, 2, 2, 2 $ $16$ $6$ $( 1, 5, 9)( 2, 3)( 4, 8,12)( 6, 7)(10,11)$
$ 6, 2, 2, 2 $ $16$ $6$ $( 1, 5, 9,12, 4, 8)( 2, 3)( 6, 7)(10,11)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$
$ 6, 3, 3 $ $64$ $6$ $( 1, 5, 9,12, 4, 8)( 2, 6,10)( 3, 7,11)$
$ 6, 6 $ $32$ $6$ $( 1, 5, 9,12, 4, 8)( 2, 7,11, 3, 6,10)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1, 9, 5)( 2, 6,10)( 3, 7,11)( 4,12, 8)$
$ 6, 3, 3 $ $64$ $6$ $( 1, 9, 5,12, 8, 4)( 2, 6,10)( 3, 7,11)$
$ 6, 6 $ $32$ $6$ $( 1, 9, 5,12, 8, 4)( 2, 7,11, 3, 6,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $36$ $2$ $( 2,10)( 3,11)( 4, 8)( 5, 9)$
$ 2, 2, 2, 2, 2, 1, 1 $ $72$ $2$ $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)$
$ 2, 2, 2, 2, 2, 2 $ $36$ $2$ $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)( 6, 7)$
$ 4, 2, 2, 1, 1, 1, 1 $ $72$ $4$ $( 2,10)( 3,11)( 4, 8, 5, 9)$
$ 4, 2, 2, 2, 1, 1 $ $72$ $4$ $( 1,12)( 2,10)( 3,11)( 4, 8, 5, 9)$
$ 4, 2, 2, 2, 1, 1 $ $72$ $4$ $( 2,10)( 3,11)( 4, 8, 5, 9)( 6, 7)$
$ 4, 2, 2, 2, 2 $ $72$ $4$ $( 1,12)( 2,10)( 3,11)( 4, 8, 5, 9)( 6, 7)$
$ 4, 4, 1, 1, 1, 1 $ $36$ $4$ $( 2,11, 3,10)( 4, 8, 5, 9)$
$ 4, 4, 2, 1, 1 $ $72$ $4$ $( 1,12)( 2,11, 3,10)( 4, 8, 5, 9)$
$ 4, 4, 2, 2 $ $36$ $4$ $( 1,12)( 2,11, 3,10)( 4, 8, 5, 9)( 6, 7)$
$ 2, 2, 2, 2, 2, 2 $ $24$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$
$ 4, 2, 2, 2, 2 $ $72$ $4$ $( 1, 7,12, 6)( 2, 8)( 3, 9)( 4,10)( 5,11)$
$ 4, 4, 2, 2 $ $72$ $4$ $( 1, 7,12, 6)( 2, 8)( 3, 9)( 4,10, 5,11)$
$ 4, 4, 4 $ $24$ $4$ $( 1, 7,12, 6)( 2, 9, 3, 8)( 4,10, 5,11)$
$ 6, 6 $ $192$ $6$ $( 1, 7, 5,11, 9, 3)( 2,12, 6, 4,10, 8)$
$ 12 $ $192$ $12$ $( 1, 7, 5,11, 9, 3,12, 6, 4,10, 8, 2)$
$ 2, 2, 2, 2, 2, 2 $ $24$ $2$ $( 1, 7)( 2, 4)( 3, 5)( 6,12)( 8,10)( 9,11)$
$ 4, 2, 2, 2, 2 $ $72$ $4$ $( 1, 7,12, 6)( 2, 4)( 3, 5)( 8,10)( 9,11)$
$ 4, 4, 2, 2 $ $72$ $4$ $( 1, 7,12, 6)( 2, 5, 3, 4)( 8,10)( 9,11)$
$ 4, 4, 4 $ $24$ $4$ $( 1, 7,12, 6)( 2, 5, 3, 4)( 8,11, 9,10)$
$ 6, 6 $ $192$ $6$ $( 1, 7, 5, 3, 9,11)( 2, 8,10,12, 6, 4)$
$ 12 $ $192$ $12$ $( 1, 7, 5, 3, 9,11,12, 6, 4, 2, 8,10)$

Group invariants

Order:  $2304=2^{8} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.