Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $238$ | |
| CHM label : | $[2^{5}]F_{36}:2_{2}{3^{2}:4}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (6,10)(7,11)(8,9), (2,6,10)(3,7,11), (1,3)(2,12)(4,6,8,10)(5,7,9,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 72: $C_3^2:D_4$ 144: 12T79 1152: $S_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:D_4$
Low degree siblings
12T237 x 2, 12T238, 16T1496 x 2, 16T1497 x 2, 24T5093 x 2, 24T5117 x 2, 24T5118 x 2, 24T5119, 24T5120 x 2, 24T5121 x 2, 24T5122 x 2, 24T5123 x 2, 24T5124, 24T5125 x 2, 24T5126 x 2, 24T5127 x 2, 24T5128 x 2, 32T205436 x 2, 32T205437 x 2, 32T205438, 32T205439, 36T3213 x 2, 36T3215 x 2, 36T3216 x 2, 36T3218, 36T3224, 36T3449 x 2, 36T3450 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1,12)( 2, 3)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 6, 7)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1,12)( 2, 3)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $( 2,10, 6)( 3,11, 7)$ |
| $ 6, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 1,12)( 2,10, 6, 3,11, 7)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $48$ | $6$ | $( 1,12)( 2,10, 7)( 3,11, 6)( 8, 9)$ |
| $ 6, 2, 2, 2 $ | $16$ | $6$ | $( 1,12)( 2,11, 6, 3,10, 7)( 4, 5)( 8, 9)$ |
| $ 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 6, 6 $ | $64$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2,10, 6, 3,11, 7)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $36$ | $2$ | $( 6,10)( 7,11)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $36$ | $2$ | $( 1,12)( 2, 3)( 6,10)( 7,11)( 8, 9)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $36$ | $4$ | $( 2, 3)( 6,10, 7,11)( 8, 9)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $36$ | $4$ | $( 1,12)( 6,10, 7,11)( 8, 9)$ |
| $ 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $4$ | $( 6,10, 7,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 6,10)( 7,11)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1,12)( 2, 3)( 4, 5)( 6,11, 7,10)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 1,12)( 4, 5)( 6,11)( 7,10)( 8, 9)$ |
| $ 6, 2, 2, 1, 1 $ | $96$ | $6$ | $( 1, 5, 9,12, 4, 8)( 6,10)( 7,11)$ |
| $ 3, 3, 2, 2, 2 $ | $96$ | $6$ | $( 1, 5, 9)( 2, 3)( 4, 8,12)( 6,10)( 7,11)$ |
| $ 6, 4, 2 $ | $96$ | $12$ | $( 1, 5, 9,12, 4, 8)( 2, 3)( 6,10, 7,11)$ |
| $ 4, 3, 3, 1, 1 $ | $96$ | $12$ | $( 1, 5, 9)( 4, 8,12)( 6,10, 7,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $36$ | $4$ | $( 4, 9, 5, 8)( 6,10, 7,11)$ |
| $ 4, 4, 2, 2 $ | $36$ | $4$ | $( 1,12)( 2, 3)( 4, 9, 5, 8)( 6,10, 7,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 2, 3)( 4, 9, 5, 8)( 6,10)( 7,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1,12)( 4, 9, 5, 8)( 6,10)( 7,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1,12)( 2, 3)( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 4, 4, 2, 2 $ | $144$ | $4$ | $( 1, 3)( 2,12)( 4, 6, 8,10)( 5, 7, 9,11)$ |
| $ 4, 4, 2, 2 $ | $144$ | $4$ | $( 1, 2)( 3,12)( 4, 6, 8,10)( 5, 7, 9,11)$ |
| $ 8, 4 $ | $144$ | $8$ | $( 1, 2,12, 3)( 4, 7, 9,11, 5, 6, 8,10)$ |
| $ 8, 4 $ | $144$ | $8$ | $( 1, 3,12, 2)( 4, 7, 9,11, 5, 6, 8,10)$ |
| $ 4, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 3)( 2,12)( 4,10)( 5,11)( 6, 9, 7, 8)$ |
| $ 4, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 9, 7, 8)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 2,12, 3)( 4,11, 5,10)( 6, 8, 7, 9)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 3,12, 2)( 4,11, 5,10)( 6, 8, 7, 9)$ |
| $ 12 $ | $192$ | $12$ | $( 1,11, 5, 7, 8, 2,12,10, 4, 6, 9, 3)$ |
| $ 12 $ | $192$ | $12$ | $( 1,11, 5, 7, 8, 3,12,10, 4, 6, 9, 2)$ |
Group invariants
| Order: | $2304=2^{8} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |