Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $236$ | |
| CHM label : | $[2^{5}]F_{36}(6):2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,5,9)(4,8,12), (4,8)(5,9), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ 72: $C_3^2:D_4$ 144: 12T77 1152: $S_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:D_4$
Low degree siblings
12T235 x 2, 12T236, 16T1493 x 2, 16T1494 x 2, 18T370 x 4, 24T5094 x 2, 24T5105, 24T5106 x 2, 24T5107 x 2, 24T5108 x 2, 24T5109 x 2, 24T5110 x 2, 24T5111 x 2, 24T5112, 24T5113 x 2, 24T5114 x 2, 24T5115 x 2, 24T5116 x 2, 32T205429 x 2, 32T205430 x 2, 32T205431, 32T205432, 32T205477 x 4, 36T3212 x 2, 36T3214 x 2, 36T3217, 36T3219 x 2, 36T3221, 36T3223 x 2, 36T3227 x 2, 36T3283 x 4, 36T3284 x 4, 36T3285 x 4, 36T3286 x 4, 36T3448 x 2, 36T3451 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1,12)( 2, 3)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1,12)( 2, 3)( 6, 7)( 8, 9)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4, 5)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $( 1, 5, 9)( 4, 8,12)$ |
| $ 6, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 3)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $48$ | $6$ | $( 1, 5, 8)( 2, 3)( 4, 9,12)( 6, 7)$ |
| $ 6, 2, 2, 2 $ | $16$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 3)( 6, 7)(10,11)$ |
| $ 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 6 $ | $64$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 6,10, 3, 7,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $(4,8)(5,9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $( 1,12)( 2, 3)( 4, 8)( 5, 9)$ |
| $ 4, 2, 1, 1, 1, 1, 1, 1 $ | $36$ | $4$ | $( 4, 9, 5, 8)( 6, 7)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 1,12)( 2, 3)( 4, 9, 5, 8)( 6, 7)$ |
| $ 4, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $4$ | $( 1,12)( 4, 9, 5, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $( 2, 3)( 4, 8)( 5, 9)( 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1,12)( 2, 3)( 4, 8)( 5, 9)( 6, 7)(10,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3)( 4, 9, 5, 8)( 6, 7)(10,11)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $96$ | $6$ | $( 2, 6,10)( 3, 7,11)( 4, 8)( 5, 9)$ |
| $ 6, 2, 2, 2 $ | $96$ | $6$ | $( 1,12)( 2, 6,10, 3, 7,11)( 4, 8)( 5, 9)$ |
| $ 6, 4, 1, 1 $ | $96$ | $12$ | $( 2, 7,11, 3, 6,10)( 4, 9, 5, 8)$ |
| $ 4, 3, 3, 2 $ | $96$ | $12$ | $( 1,12)( 2, 7,11)( 3, 6,10)( 4, 9, 5, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $( 2,10)( 3,11)( 4, 8)( 5, 9)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1,12)( 2,10, 3,11)( 4, 8)( 5, 9)$ |
| $ 4, 4, 2, 2 $ | $36$ | $4$ | $( 1,12)( 2,10, 3,11)( 4, 9, 5, 8)( 6, 7)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $36$ | $4$ | $( 2,10, 3,11)( 4, 9, 5, 8)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1,12)( 2,10)( 3,11)( 4, 9, 5, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)( 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $72$ | $4$ | $( 1, 7,12, 6)( 2, 8, 3, 9)( 4,10)( 5,11)$ |
| $ 4, 4, 2, 2 $ | $72$ | $4$ | $( 1, 7)( 2, 9, 3, 8)( 4,10, 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 7)( 2, 9)( 3, 8)( 4,10)( 5,11)( 6,12)$ |
| $ 6, 6 $ | $192$ | $6$ | $( 1, 7, 5,11, 9, 3)( 2,12, 6, 4,10, 8)$ |
| $ 6, 6 $ | $192$ | $6$ | $( 1, 7, 5,11, 9, 2)( 3,12, 6, 4,10, 8)$ |
| $ 4, 4, 2, 2 $ | $144$ | $4$ | $( 1, 7)( 2, 4,10, 8)( 3, 5,11, 9)( 6,12)$ |
| $ 8, 4 $ | $144$ | $8$ | $( 1, 7,12, 6)( 2, 4,10, 8, 3, 5,11, 9)$ |
| $ 4, 4, 2, 2 $ | $144$ | $4$ | $( 1, 7)( 2, 4,10, 9)( 3, 5,11, 8)( 6,12)$ |
| $ 8, 4 $ | $144$ | $8$ | $( 1, 7,12, 6)( 2, 4,10, 9, 3, 5,11, 8)$ |
Group invariants
| Order: | $2304=2^{8} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |