Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $227$ | |
| CHM label : | $[2^{6}]S_{4}(6d)=2wrS_{4}(6d)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12), (2,8)(3,9)(4,10)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (2,10)(3,11)(4,8)(5,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ x 3 48: $S_4\times C_2$ x 3 96: $V_4^2:S_3$ 192: $C_2^3:S_4$ x 2, 12T100 384: 16T747 768: 16T1063 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T226 x 8, 12T227 x 7, 24T3089 x 2, 24T3115 x 2, 24T3152 x 2, 24T3206 x 2, 24T3628 x 2, 24T4307 x 2, 24T4877 x 4, 24T4878 x 4, 24T4879 x 4, 24T4880 x 8, 24T4881 x 4, 24T4882 x 4, 24T4883 x 4, 24T4884 x 4, 24T4885 x 8, 24T4886 x 4, 24T4887 x 8, 24T4888 x 4, 24T4889 x 4, 24T4890 x 8, 24T4891 x 4, 24T4892 x 4, 24T4893 x 8, 32T97069 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 1,12)( 4, 5)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 1,12)( 4, 5)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1,12)( 4, 5)( 8, 9)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1,12)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 1,12)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 8)( 3, 9)( 4,10)( 5,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $24$ | $2$ | $( 1,12)( 2, 8)( 3, 9)( 4,10)( 5,11)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 2, 8)( 3, 9)( 4,10, 5,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $48$ | $4$ | $( 1,12)( 2, 8)( 3, 9)( 4,10, 5,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $12$ | $4$ | $( 2, 9, 3, 8)( 4,10, 5,11)$ |
| $ 4, 4, 2, 1, 1 $ | $24$ | $4$ | $( 1,12)( 2, 9, 3, 8)( 4,10, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1,12)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6, 7)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,12)( 2, 8)( 3, 9)( 4,10, 5,11)( 6, 7)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1,12)( 2, 9, 3, 8)( 4,10, 5,11)( 6, 7)$ |
| $ 3, 3, 3, 3 $ | $128$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 3, 3 $ | $128$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 6,10)( 3, 7,11)$ |
| $ 6, 3, 3 $ | $128$ | $6$ | $( 1, 5, 9)( 2, 6,11, 3, 7,10)( 4, 8,12)$ |
| $ 6, 6 $ | $128$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 6,11, 3, 7,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $24$ | $2$ | $( 2,10)( 3,11)( 4, 8)( 5, 9)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $24$ | $2$ | $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $48$ | $4$ | $( 2,10)( 3,11)( 4, 8, 5, 9)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $48$ | $4$ | $( 1,12)( 2,10)( 3,11)( 4, 8, 5, 9)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $24$ | $4$ | $( 2,11, 3,10)( 4, 8, 5, 9)$ |
| $ 4, 4, 2, 1, 1 $ | $24$ | $4$ | $( 1,12)( 2,11, 3,10)( 4, 8, 5, 9)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $24$ | $2$ | $( 2,10)( 3,11)( 4, 8)( 5, 9)( 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)( 6, 7)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $48$ | $4$ | $( 2,10)( 3,11)( 4, 8, 5, 9)( 6, 7)$ |
| $ 4, 2, 2, 2, 2 $ | $48$ | $4$ | $( 1,12)( 2,10)( 3,11)( 4, 8, 5, 9)( 6, 7)$ |
| $ 4, 4, 2, 1, 1 $ | $24$ | $4$ | $( 2,11, 3,10)( 4, 8, 5, 9)( 6, 7)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1,12)( 2,11, 3,10)( 4, 8, 5, 9)( 6, 7)$ |
| $ 4, 4, 2, 2 $ | $96$ | $4$ | $( 1, 7)( 2,10, 8, 4)( 3,11, 9, 5)( 6,12)$ |
| $ 4, 4, 4 $ | $96$ | $4$ | $( 1, 7,12, 6)( 2,10, 8, 4)( 3,11, 9, 5)$ |
| $ 8, 2, 2 $ | $96$ | $8$ | $( 1, 7)( 2,10, 8, 5, 3,11, 9, 4)( 6,12)$ |
| $ 8, 4 $ | $96$ | $8$ | $( 1, 7,12, 6)( 2,10, 8, 5, 3,11, 9, 4)$ |
Group invariants
| Order: | $1536=2^{9} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |