Properties

Label 12T223
Order \(1536\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $223$
CHM label :  $1/2e[D(4)^{3}]S(3)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,12)(6,9), (3,9)(6,12), (1,11)(2,10)(3,9)(4,8)(5,7), (1,7)(3,9), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  12T100
384:  16T751
768:  16T1063

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_4\times C_2$

Low degree siblings

12T223 x 3, 12T224 x 4, 24T2996 x 2, 24T3106, 24T3107, 24T3112 x 2, 24T3117, 24T3122, 24T3149, 24T3170, 24T3176, 24T3180, 24T3560, 24T3600, 24T4285 x 2, 24T4287, 24T4357, 24T4857 x 2, 24T4858 x 2, 24T4859 x 4, 24T4860 x 2, 24T4861 x 2, 24T4862 x 2, 24T4863 x 2, 24T4864 x 2, 24T4865 x 2, 24T4866 x 2, 24T4867 x 2, 24T4868 x 2, 24T4869 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 3,12)( 6, 9)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 3, 9)( 6,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $12$ $2$ $( 1, 4)( 3,12)( 6, 9)( 7,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $12$ $2$ $( 1, 4)( 3, 9)( 6,12)( 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 4)( 2, 5)( 3,12)( 6, 9)( 7,10)( 8,11)$
$ 2, 2, 2, 2, 2, 2 $ $12$ $2$ $( 1, 4)( 2, 5)( 3, 9)( 6,12)( 7,10)( 8,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $3$ $2$ $( 2, 8)( 3, 9)( 5,11)( 6,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 8)( 3, 9)( 5,11)( 6,12)( 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $12$ $2$ $( 5,11)( 6,12)$
$ 4, 2, 1, 1, 1, 1, 1, 1 $ $24$ $4$ $( 3,12, 9, 6)( 5,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $24$ $2$ $( 1, 4)( 5,11)( 6,12)( 7,10)$
$ 4, 2, 2, 2, 1, 1 $ $48$ $4$ $( 1, 4)( 3,12, 9, 6)( 5,11)( 7,10)$
$ 4, 4, 1, 1, 1, 1 $ $12$ $4$ $( 2, 5, 8,11)( 3,12, 9, 6)$
$ 4, 4, 2, 2 $ $24$ $4$ $( 1, 4)( 2, 5, 8,11)( 3,12, 9, 6)( 7,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $12$ $2$ $( 1, 7)( 4,10)( 5,11)( 6,12)$
$ 4, 2, 2, 2, 1, 1 $ $24$ $4$ $( 1, 7)( 3,12, 9, 6)( 4,10)( 5,11)$
$ 4, 4, 2, 2 $ $12$ $4$ $( 1, 7)( 2, 5, 8,11)( 3,12, 9, 6)( 4,10)$
$ 3, 3, 3, 3 $ $128$ $3$ $( 1, 3,11)( 2,10, 6)( 4,12, 8)( 5, 7, 9)$
$ 6, 6 $ $128$ $6$ $( 1,12, 8, 4, 3,11)( 2,10, 9, 5, 7, 6)$
$ 6, 6 $ $128$ $6$ $( 1, 6, 2,10, 3,11)( 4, 9, 5, 7,12, 8)$
$ 6, 6 $ $128$ $6$ $( 1, 9, 5, 7, 3,11)( 2,10,12, 8, 4, 6)$
$ 2, 2, 2, 2, 2, 1, 1 $ $48$ $2$ $( 1,11)( 2,10)( 4, 8)( 5, 7)( 6,12)$
$ 4, 2, 2, 2, 2 $ $48$ $4$ $( 1,11)( 2,10)( 3,12, 9, 6)( 4, 8)( 5, 7)$
$ 4, 4, 2, 1, 1 $ $96$ $4$ $( 1,11, 4, 8)( 2, 7, 5,10)( 6,12)$
$ 4, 4, 4 $ $96$ $4$ $( 1,11, 4, 8)( 2, 7, 5,10)( 3,12, 9, 6)$
$ 4, 4, 2, 1, 1 $ $48$ $4$ $( 1, 2, 7, 8)( 4, 5,10,11)( 6,12)$
$ 4, 4, 4 $ $48$ $4$ $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$
$ 4, 2, 2, 1, 1, 1, 1 $ $48$ $4$ $( 1, 5, 7,11)( 2,10)( 4, 8)$
$ 4, 2, 2, 2, 2 $ $48$ $4$ $( 1, 5, 7,11)( 2,10)( 3,12)( 4, 8)( 6, 9)$
$ 4, 2, 2, 2, 2 $ $48$ $4$ $( 1, 5, 7,11)( 2,10)( 3, 6)( 4, 8)( 9,12)$
$ 4, 2, 2, 2, 2 $ $48$ $4$ $( 1, 5, 7,11)( 2,10)( 3, 9)( 4, 8)( 6,12)$
$ 8, 1, 1, 1, 1 $ $48$ $8$ $( 1, 5,10, 2, 7,11, 4, 8)$
$ 8, 2, 2 $ $48$ $8$ $( 1, 5,10, 2, 7,11, 4, 8)( 3,12)( 6, 9)$
$ 8, 2, 2 $ $48$ $8$ $( 1, 5,10, 2, 7,11, 4, 8)( 3, 6)( 9,12)$
$ 8, 2, 2 $ $48$ $8$ $( 1, 5,10, 2, 7,11, 4, 8)( 3, 9)( 6,12)$

Group invariants

Order:  $1536=2^{9} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.