Properties

Label 12T222
Order \(1536\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $D_4\wr C_3$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $222$
Group :  $D_4\wr C_3$
CHM label :  $[D(4)^{4}]3=D(4)wr3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,6,9,12), (3,9), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
12:  $A_4$ x 5, $C_6\times C_2$
24:  $A_4\times C_2$ x 15
48:  $C_2^2 \times A_4$ x 5, $C_2^4:C_3$
96:  12T56 x 3
192:  12T90
384:  16T718
768:  24T1654

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 4: None

Degree 6: $A_4\times C_2$

Low degree siblings

12T222 x 31, 24T4838 x 32, 24T4839 x 16, 24T4840 x 32, 24T4841 x 16, 24T4842 x 16, 24T4843 x 32, 24T4844 x 32, 24T4845 x 32, 24T4846 x 32, 24T4847 x 32, 24T4848 x 32, 24T4849 x 32, 24T4850 x 32, 24T4851 x 16, 24T4852 x 32, 24T4853 x 16, 24T4854 x 32, 24T4855 x 16, 24T4856 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1536=2^{9} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.