Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $221$ | |
| CHM label : | $[1/2.cD(4)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,6,9,12), (1,5)(2,10)(4,8)(7,11), (1,7)(3,9), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ x 3 48: $S_4\times C_2$ x 3 96: $V_4^2:S_3$ 192: 12T100 384: 16T763 768: 24T2216 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$
Low degree siblings
12T221 x 7, 24T3114 x 2, 24T3116 x 4, 24T3120 x 2, 24T3146 x 2, 24T3179 x 2, 24T4298 x 2, 24T4305 x 2, 24T4344 x 2, 24T4831 x 4, 24T4832 x 4, 24T4833 x 4, 24T4834 x 4, 24T4835 x 4, 24T4836 x 4, 24T4837 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 7)( 3, 9)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $4$ | $( 3, 6, 9,12)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $12$ | $4$ | $( 1, 7)( 3, 6, 9,12)( 4,10)$ |
| $ 4, 2, 2, 2, 2 $ | $6$ | $4$ | $( 1, 7)( 2, 8)( 3, 6, 9,12)( 4,10)( 5,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $12$ | $4$ | $( 1, 4, 7,10)( 3, 6, 9,12)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 4, 7,10)( 2, 8)( 3, 6, 9,12)( 5,11)$ |
| $ 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 1, 7)( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $24$ | $2$ | $( 3, 6)( 5,11)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $24$ | $2$ | $( 1, 7)( 3, 6)( 4,10)( 5,11)( 9,12)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 1, 4, 7,10)( 5,11)( 6,12)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $48$ | $4$ | $( 1, 4, 7,10)( 3, 6)( 5,11)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 7)( 2, 5)( 3, 6)( 4,10)( 8,11)( 9,12)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 4, 7,10)( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $128$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 6, 6 $ | $128$ | $6$ | $( 1, 3,11, 7, 9, 5)( 2,10,12, 8, 4, 6)$ |
| $ 12 $ | $128$ | $12$ | $( 1,12, 8, 4, 3,11, 7, 6, 2,10, 9, 5)$ |
| $ 12 $ | $128$ | $12$ | $( 1, 6, 2,10, 3,11, 7,12, 8, 4, 9, 5)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $24$ | $2$ | $( 1, 5)( 2,10)( 4, 8)( 7,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 5)( 2,10)( 3, 9)( 4, 8)( 6,12)( 7,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $24$ | $4$ | $( 1, 5, 7,11)( 2, 4, 8,10)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 5, 7,11)( 2, 4, 8,10)( 3, 9)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 5)( 2,10)( 3, 6, 9,12)( 4, 8)( 7,11)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 5)( 2,10)( 3,12, 9, 6)( 4, 8)( 7,11)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 5, 7,11)( 2, 4, 8,10)( 3, 6, 9,12)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 5, 7,11)( 2, 4, 8,10)( 3,12, 9, 6)$ |
| $ 8, 1, 1, 1, 1 $ | $48$ | $8$ | $( 1, 5, 4, 8, 7,11,10, 2)$ |
| $ 8, 2, 2 $ | $48$ | $8$ | $( 1, 5, 4, 8, 7,11,10, 2)( 3, 9)( 6,12)$ |
| $ 8, 4 $ | $48$ | $8$ | $( 1, 5, 4, 8, 7,11,10, 2)( 3, 6, 9,12)$ |
| $ 8, 4 $ | $48$ | $8$ | $( 1, 5, 4, 8, 7,11,10, 2)( 3,12, 9, 6)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $96$ | $4$ | $( 1,11, 7, 5)( 2,10)( 4, 8)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $96$ | $4$ | $( 1,11, 7, 5)( 2,10)( 3, 6)( 4, 8)( 9,12)$ |
| $ 4, 4, 2, 1, 1 $ | $96$ | $4$ | $( 1,11,10, 2)( 4, 8, 7, 5)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $96$ | $4$ | $( 1,11,10, 2)( 3, 6)( 4, 8, 7, 5)( 9,12)$ |
Group invariants
| Order: | $1536=2^{9} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |