Properties

Label 12T219
Order \(1440\)
n \(12\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No
Group: $S_6\times C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $219$
Group :  $S_6\times C_2$
CHM label :  $S(6)[x]2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,5,7,9,11)(2,4,6,8,10,12), (1,3)(2,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
720:  $S_6$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: None

Degree 6: $S_6$

Low degree siblings

12T219 x 3, 20T198 x 2, 20T199 x 2, 24T2959 x 2, 30T260 x 4, 30T261 x 4, 40T1177, 40T1178, 40T1189 x 2, 40T1190 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $15$ $2$ $( 8,10)( 9,11)$
$ 2, 2, 2, 2, 2, 2 $ $15$ $2$ $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8,11)( 9,10)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $40$ $3$ $( 6, 8,10)( 7, 9,11)$
$ 6, 2, 2, 2 $ $40$ $6$ $( 1,12)( 2, 3)( 4, 5)( 6, 9,10, 7, 8,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $45$ $2$ $( 4, 6)( 5, 7)( 8,10)( 9,11)$
$ 2, 2, 2, 2, 2, 2 $ $45$ $2$ $( 1,12)( 2, 3)( 4, 7)( 5, 6)( 8,11)( 9,10)$
$ 4, 4, 1, 1, 1, 1 $ $90$ $4$ $( 4, 6, 8,10)( 5, 7, 9,11)$
$ 4, 4, 2, 2 $ $90$ $4$ $( 1,12)( 2, 3)( 4, 7, 8,11)( 5, 6, 9,10)$
$ 3, 3, 2, 2, 1, 1 $ $120$ $6$ $( 2, 4)( 3, 5)( 6, 8,10)( 7, 9,11)$
$ 6, 2, 2, 2 $ $120$ $6$ $( 1,12)( 2, 5)( 3, 4)( 6, 9,10, 7, 8,11)$
$ 5, 5, 1, 1 $ $144$ $5$ $( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)$
$ 10, 2 $ $144$ $10$ $( 1,12)( 2, 5, 6, 9,10, 3, 4, 7, 8,11)$
$ 2, 2, 2, 2, 2, 2 $ $15$ $2$ $( 1, 3)( 2,12)( 4, 6)( 5, 7)( 8,10)( 9,11)$
$ 2, 2, 2, 2, 2, 2 $ $15$ $2$ $( 1, 2)( 3,12)( 4, 7)( 5, 6)( 8,11)( 9,10)$
$ 4, 4, 2, 2 $ $90$ $4$ $( 1, 3)( 2,12)( 4, 6, 8,10)( 5, 7, 9,11)$
$ 4, 4, 2, 2 $ $90$ $4$ $( 1, 2)( 3,12)( 4, 7, 8,11)( 5, 6, 9,10)$
$ 3, 3, 3, 3 $ $40$ $3$ $( 1, 3, 5)( 2, 4,12)( 6, 8,10)( 7, 9,11)$
$ 6, 6 $ $40$ $6$ $( 1, 2, 5,12, 3, 4)( 6, 9,10, 7, 8,11)$
$ 6, 6 $ $120$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$
$ 6, 6 $ $120$ $6$ $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$

Group invariants

Order:  $1440=2^{5} \cdot 3^{2} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  [1440, 5842]
Character table: Data not available.