Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $208$ | |
| CHM label : | $[2A_{4}^{2}]2=2A4wr2=2wrF_{18}(6)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (6,12), (2,6,10)(4,8,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 8: $D_{4}$ 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $(C_6\times C_2):C_2$, $D_4 \times C_3$ 36: $C_6\times S_3$ 72: 12T42 288: $A_4\wr C_2$ 576: 12T158 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $S_3\times C_3$
Low degree siblings
12T208, 16T1286 x 2, 24T2815 x 2, 24T2816 x 2, 24T2817 x 2, 24T2818 x 2, 24T2819, 32T96688, 36T1607, 36T1613 x 2, 36T1635, 36T1914 x 2, 36T1915 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 6,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,10)( 6,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5,11)( 6,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 8)( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $8$ | $6$ | $( 2,12, 4, 8, 6,10)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $24$ | $6$ | $( 2, 6,10)( 4, 8,12)( 5,11)$ |
| $ 6, 2, 1, 1, 1, 1 $ | $24$ | $6$ | $( 2,12, 4, 8, 6,10)( 5,11)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $24$ | $6$ | $( 2, 6,10)( 3, 9)( 4, 8,12)( 5,11)$ |
| $ 6, 2, 2, 1, 1 $ | $24$ | $6$ | $( 2,12, 4, 8, 6,10)( 3, 9)( 5,11)$ |
| $ 3, 3, 2, 2, 2 $ | $8$ | $6$ | $( 1, 7)( 2, 6,10)( 3, 9)( 4, 8,12)( 5,11)$ |
| $ 6, 2, 2, 2 $ | $8$ | $6$ | $( 1, 7)( 2,12, 4, 8, 6,10)( 3, 9)( 5,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 4,12, 8)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $8$ | $6$ | $( 2,10,12, 8, 4, 6)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $24$ | $6$ | $( 2,10, 6)( 4,12, 8)( 5,11)$ |
| $ 6, 2, 1, 1, 1, 1 $ | $24$ | $6$ | $( 2,10,12, 8, 4, 6)( 5,11)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $24$ | $6$ | $( 2,10, 6)( 3, 9)( 4,12, 8)( 5,11)$ |
| $ 6, 2, 2, 1, 1 $ | $24$ | $6$ | $( 2,10,12, 8, 4, 6)( 3, 9)( 5,11)$ |
| $ 3, 3, 2, 2, 2 $ | $8$ | $6$ | $( 1, 7)( 2,10, 6)( 3, 9)( 4,12, 8)( 5,11)$ |
| $ 6, 2, 2, 2 $ | $8$ | $6$ | $( 1, 7)( 2,10,12, 8, 4, 6)( 3, 9)( 5,11)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 5, 9)( 2,12, 4, 8, 6,10)( 3, 7,11)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1,11, 3, 7, 5, 9)( 2,12, 4, 8, 6,10)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 5, 9)( 2,10,12, 8, 4, 6)( 3, 7,11)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1,11, 3, 7, 5, 9)( 2,10, 6)( 4,12, 8)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1,11, 3, 7, 5, 9)( 2,10,12, 8, 4, 6)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 9, 5)( 2,10,12, 8, 4, 6)( 3,11, 7)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 9,11, 7, 3, 5)( 2,10,12, 8, 4, 6)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 4, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 6, 7,12)( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 4, 4, 2, 2 $ | $72$ | $4$ | $( 1, 6, 7,12)( 2, 3)( 4, 5,10,11)( 8, 9)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 6, 7,12)( 2, 3, 8, 9)( 4, 5,10,11)$ |
| $ 6, 6 $ | $96$ | $6$ | $( 1, 4, 5, 8, 9,12)( 2, 3, 6, 7,10,11)$ |
| $ 12 $ | $96$ | $12$ | $( 1, 4, 5, 8, 9, 6, 7,10,11, 2, 3,12)$ |
| $ 6, 6 $ | $96$ | $6$ | $( 1, 8, 9, 4, 5,12)( 2, 3,10,11, 6, 7)$ |
| $ 12 $ | $96$ | $12$ | $( 1, 8, 9, 4, 5, 6, 7, 2, 3,10,11,12)$ |
Group invariants
| Order: | $1152=2^{7} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |