Properties

Label 12T206
Order \(1152\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $206$
CHM label :  $[1/9.A(4)^{3}]S(3)$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,12)(6,9), (3,9)(6,12), (2,8,11)(3,6,12)(4,7,10), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $S_3$, $C_6$
12:  $A_4$
18:  $S_3\times C_3$
24:  $A_4\times C_2$
72:  12T43
288:  $A_4\wr C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: None

Low degree siblings

12T206 x 2, 18T268 x 3, 18T271 x 3, 24T2768 x 3, 24T2769 x 3, 24T2813 x 3, 24T2825, 24T2827, 32T96680, 36T1609, 36T1618 x 3, 36T1735 x 3, 36T1736 x 3, 36T1737 x 3, 36T1738 x 3, 36T1744 x 3, 36T1745 x 3, 36T1746 x 6, 36T1897 x 6, 36T1898 x 3, 36T1899 x 3, 36T1900 x 3, 36T1901 x 3, 36T1936 x 3, 36T1937 x 3, 36T1938 x 3, 36T1939

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 3,12)( 6, 9)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $18$ $2$ $( 1, 4)( 3,12)( 6, 9)( 7,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $9$ $2$ $( 1, 4)( 3, 6)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $9$ $2$ $( 1, 4)( 2,11)( 3,12)( 5, 8)( 6, 9)( 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $3$ $2$ $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $9$ $2$ $( 1, 4)( 2,11)( 3, 9)( 5, 8)( 6,12)( 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 8)( 3,12)( 5,11)( 6, 9)( 7,10)$
$ 3, 3, 3, 1, 1, 1 $ $64$ $3$ $( 4, 7,10)( 5,11, 8)( 6, 9,12)$
$ 3, 3, 3, 1, 1, 1 $ $64$ $3$ $( 4,10, 7)( 5, 8,11)( 6,12, 9)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$
$ 6, 6 $ $96$ $6$ $( 1, 6, 2,10, 9, 5)( 3,11, 7,12, 8, 4)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1,12, 5)( 2, 4, 6)( 3, 8, 7)( 9,11,10)$
$ 6, 6 $ $96$ $6$ $( 1, 3, 8, 7,12, 5)( 2, 4, 9,11,10, 6)$
$ 6, 6 $ $96$ $6$ $( 1, 6, 2, 7, 3, 5)( 4, 9, 8,10,12,11)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1, 3, 5)( 2, 7, 6)( 4,12,11)( 8,10, 9)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $12$ $2$ $( 1, 5)( 2,10)( 4, 8)( 7,11)$
$ 2, 2, 2, 2, 2, 2 $ $36$ $2$ $( 1, 5)( 2,10)( 3,12)( 4, 8)( 6, 9)( 7,11)$
$ 4, 4, 1, 1, 1, 1 $ $36$ $4$ $( 1, 5, 4, 8)( 2, 7,11,10)$
$ 4, 4, 2, 2 $ $36$ $4$ $( 1, 5, 4, 8)( 2, 7,11,10)( 3,12)( 6, 9)$
$ 4, 4, 2, 2 $ $36$ $4$ $( 1, 5, 4, 8)( 2, 7,11,10)( 3, 6)( 9,12)$
$ 4, 4, 2, 2 $ $36$ $4$ $( 1, 5, 4, 8)( 2, 7,11,10)( 3, 9)( 6,12)$
$ 6, 3, 2, 1 $ $192$ $6$ $( 1,11,10, 2, 4, 5)( 6, 9,12)( 7, 8)$
$ 6, 3, 2, 1 $ $192$ $6$ $( 1, 8,10, 2, 7, 5)( 4,11)( 6,12, 9)$

Group invariants

Order:  $1152=2^{7} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.