Properties

Label 12T205
Order \(1152\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $205$
CHM label :  $[E(4)^{3}:3:2]3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,12)(6,9), (3,9)(6,12), (2,8,11)(3,6,12)(4,7,10), (1,10)(2,5)(6,9), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $S_3$, $C_6$
18:  $S_3\times C_3$
24:  $S_4$
72:  12T45
288:  $A_4\wr C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 4: None

Degree 6: None

Low degree siblings

18T269, 18T270, 24T2765, 24T2767, 24T2812, 24T2823, 24T2829, 24T2831, 32T96681, 36T1610, 36T1615, 36T1617, 36T1724, 36T1725, 36T1755, 36T1756, 36T1757, 36T1896 x 2, 36T1902, 36T1903, 36T1904, 36T1905, 36T1940, 36T1941, 36T1942 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 3,12)( 6, 9)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $18$ $2$ $( 1, 4)( 3,12)( 6, 9)( 7,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $9$ $2$ $( 1, 4)( 3, 6)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $18$ $2$ $( 1, 4)( 2,11)( 3,12)( 5, 8)( 6, 9)( 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $3$ $2$ $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 8)( 3,12)( 5,11)( 6, 9)( 7,10)$
$ 3, 3, 3, 1, 1, 1 $ $128$ $3$ $( 4, 7,10)( 5,11, 8)( 6, 9,12)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $24$ $2$ $( 5, 8)( 7,10)( 9,12)$
$ 4, 2, 2, 1, 1, 1, 1 $ $72$ $4$ $( 3,12, 6, 9)( 5, 8)( 7,10)$
$ 4, 4, 2, 1, 1 $ $72$ $4$ $( 2, 8,11, 5)( 3,12, 6, 9)( 7,10)$
$ 4, 4, 4 $ $24$ $4$ $( 1, 7, 4,10)( 2, 8,11, 5)( 3,12, 6, 9)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$
$ 6, 6 $ $48$ $6$ $( 1, 5, 6,10, 2, 9)( 3, 7,11,12, 4, 8)$
$ 6, 6 $ $96$ $6$ $( 1,11, 3,10, 2, 9)( 4, 5,12, 7, 8, 6)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1,11, 9)( 2, 3,10)( 4, 5, 6)( 7, 8,12)$
$ 6, 3, 3 $ $96$ $6$ $( 1, 8, 9)( 2, 6, 7,11, 3,10)( 4, 5,12)$
$ 12 $ $96$ $12$ $( 1, 8, 6, 7,11,12, 4, 5, 3,10, 2, 9)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$
$ 6, 6 $ $48$ $6$ $( 1, 6, 2,10, 9, 5)( 3,11, 7,12, 8, 4)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1,12, 5)( 2, 4, 6)( 3, 8, 7)( 9,11,10)$
$ 6, 6 $ $96$ $6$ $( 1, 3, 8, 7,12, 5)( 2, 4, 9,11,10, 6)$
$ 6, 3, 3 $ $96$ $6$ $( 1,12, 5)( 2, 7, 3,11,10, 6)( 4, 9, 8)$
$ 12 $ $96$ $12$ $( 1, 3,11,10, 9, 8, 4, 6, 2, 7,12, 5)$

Group invariants

Order:  $1152=2^{7} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.