Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $20$ | |
| Group : | $C_3\times A_4$ | |
| CHM label : | $A(4)[x]C(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,10)(2,5,11)(3,6,9), (2,8,11)(3,6,12)(4,7,10), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: $A_4$
Degree 6: None
Low degree siblings
12T20 x 2, 18T8, 36T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 8,11)( 3, 6,12)( 4, 7,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,11, 8)( 3,12, 6)( 4,10, 7)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2, 3)( 4, 8,12)( 5, 6, 7)( 9,10,11)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2,12)( 3, 7,11)( 4, 5, 6)( 8, 9,10)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 2)( 4,12, 8)( 5, 7, 6)( 9,11,10)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 8)( 2,10, 6)( 4, 9,11)( 5, 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 11] |
| Character table: |
2 2 . . . 2 . . 2 . 2 2 2
3 2 2 2 2 1 2 2 1 2 1 2 2
1a 3a 3b 3c 6a 3d 3e 6b 3f 2a 3g 3h
2P 1a 3b 3a 3e 3h 3f 3c 3g 3d 1a 3h 3g
3P 1a 1a 1a 1a 2a 1a 1a 2a 1a 2a 1a 1a
5P 1a 3b 3a 3e 6b 3f 3c 6a 3d 2a 3h 3g
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 A A A /A /A /A 1 A /A
X.3 1 1 1 /A /A /A A A A 1 /A A
X.4 1 A /A 1 /A A 1 A /A 1 /A A
X.5 1 /A A 1 A /A 1 /A A 1 A /A
X.6 1 A /A A 1 /A /A 1 A 1 1 1
X.7 1 /A A /A 1 A A 1 /A 1 1 1
X.8 1 A /A /A A 1 A /A 1 1 A /A
X.9 1 /A A A /A 1 /A A 1 1 /A A
X.10 3 . . . -1 . . -1 . -1 3 3
X.11 3 . . . -/A . . -A . -1 B /B
X.12 3 . . . -A . . -/A . -1 /B B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
|