Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $193$ | |
| CHM label : | $[2^{6}]D(6)=2wrD(6)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,11)(2,8)(3,9)(4,6)(5,7)(10,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 3 16: $D_4\times C_2$ 24: $S_4$, $S_3 \times C_2^2$ 48: $S_4\times C_2$ x 3, 12T28 96: 12T48 192: $V_4^2:(S_3\times C_2)$, 12T86 384: 12T136 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Low degree siblings
12T186 x 4, 12T193 x 3, 16T1053 x 4, 24T1557, 24T1598, 24T1767, 24T1844, 24T1882, 24T1911, 24T2208 x 2, 24T2209 x 2, 24T2487 x 2, 24T2488 x 2, 24T2552 x 2, 24T2553 x 4, 24T2554 x 2, 24T2555 x 2, 24T2556 x 2, 24T2557 x 2, 24T2558 x 2, 24T2595 x 2, 24T2596 x 2, 24T2597 x 4, 24T2598 x 4, 24T2599 x 4, 24T2600 x 4, 24T2601 x 4, 24T2602 x 4, 24T2603 x 4, 24T2604 x 4, 24T2605 x 2, 24T2606 x 2, 24T2607 x 2, 24T2608 x 2, 32T34686 x 2, 32T34687 x 2, 32T34688 x 2, 32T34803, 32T35039Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)( 2, 3)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 8, 9)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 1,12)( 2, 3)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)( 2, 3)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 1,12)( 4, 5)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1,12)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 3, 3 $ | $64$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 6,10)( 3, 7,11)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 5, 9,12, 4, 8)( 2, 6,11, 3, 7,10)$ |
| $ 6, 6 $ | $64$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 12 $ | $64$ | $12$ | $( 1, 3, 5, 7, 9,11,12, 2, 4, 6, 8,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 7,12, 6)( 2, 8)( 3, 9)( 4,10)( 5,11)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 7,12, 6)( 2, 8)( 3, 9)( 4,11, 5,10)$ |
| $ 4, 4, 4 $ | $8$ | $4$ | $( 1, 7,12, 6)( 2, 8, 3, 9)( 4,11, 5,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2,10)( 3,11)( 4, 8)( 5, 9)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $24$ | $2$ | $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 2,11, 3,10)( 4, 8)( 5, 9)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $24$ | $4$ | $( 1,12)( 2,11, 3,10)( 4, 8)( 5, 9)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $24$ | $4$ | $( 1,12)( 2,10)( 3,11)( 4, 9, 5, 8)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $12$ | $4$ | $( 2,11, 3,10)( 4, 9, 5, 8)$ |
| $ 4, 4, 2, 1, 1 $ | $24$ | $4$ | $( 1,12)( 2,11, 3,10)( 4, 9, 5, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1,12)( 2,10)( 3,11)( 4, 8)( 5, 9)( 6, 7)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,12)( 2,11, 3,10)( 4, 8)( 5, 9)( 6, 7)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1,12)( 2,11, 3,10)( 4, 9, 5, 8)( 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 3)( 2,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 2, 2, 2, 2 $ | $48$ | $4$ | $( 1, 3,12, 2)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 3)( 2,12)( 4,11, 5,10)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $48$ | $4$ | $( 1, 3,12, 2)( 4,11, 5,10)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 3,12, 2)( 4,10)( 5,11)( 6, 9, 7, 8)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 3,12, 2)( 4,11, 5,10)( 6, 9, 7, 8)$ |
Group invariants
| Order: | $768=2^{8} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [768, 1087581] |
| Character table: Data not available. |