Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $183$ | |
| CHM label : | $S_{6}(12)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5)(2,4,12), (2,4,6,8,10)(3,5,7,9,11), (1,12)(2,3)(4,5)(6,7)(8,11)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $S_6$
Low degree siblings
6T16 x 2, 10T32, 12T183, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 6, 8,10)( 7, 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $45$ | $2$ | $( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 5, 5, 1, 1 $ | $144$ | $5$ | $( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,12)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 6, 2, 2, 2 $ | $120$ | $6$ | $( 1, 2)( 3,12)( 4, 5)( 6, 9,10, 7, 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,12)( 4, 7)( 5, 6)( 8,11)( 9,10)$ |
| $ 4, 4, 2, 2 $ | $90$ | $4$ | $( 1, 2, 5, 6)( 3, 4, 7,12)( 8, 9)(10,11)$ |
| $ 6, 6 $ | $120$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 4, 4, 2, 2 $ | $90$ | $4$ | $( 1, 3, 5, 7)( 2, 4, 6,12)( 8,10)( 9,11)$ |
| $ 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 3, 5)( 2, 4,12)( 6, 8,10)( 7, 9,11)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 763] |
| Character table: |
2 4 1 4 . 4 1 4 3 1 3 1
3 2 2 . . 1 1 1 . 1 . 2
5 1 . . 1 . . . . . . .
1a 3a 2a 5a 2b 6a 2c 4a 6b 4b 3b
2P 1a 3a 1a 5a 1a 3a 1a 2a 3b 2a 3b
3P 1a 1a 2a 5a 2b 2b 2c 4a 2c 4b 1a
5P 1a 3a 2a 1a 2b 6a 2c 4a 6b 4b 3b
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1 -1 1 1
X.3 5 2 1 . -3 . 1 -1 1 -1 -1
X.4 5 2 1 . 3 . -1 1 -1 -1 -1
X.5 5 -1 1 . -1 -1 3 1 . -1 2
X.6 5 -1 1 . 1 1 -3 -1 . -1 2
X.7 9 . 1 -1 -3 . -3 1 . 1 .
X.8 9 . 1 -1 3 . 3 -1 . 1 .
X.9 10 1 -2 . -2 1 2 . -1 . 1
X.10 10 1 -2 . 2 -1 -2 . 1 . 1
X.11 16 -2 . 1 . . . . . . -2
|