Show commands:
Magma
magma: G := TransitiveGroup(12, 179);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $179$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,11)$ | ||
CHM label: | $L(2,11)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9,10,12), (1,10)(2,5)(3,7)(4,8)(6,9)(11,12) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Low degree siblings
11T5 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 1, 1 $ | $132$ | $5$ | $( 3, 4,10,12, 7)( 5,11, 9, 6, 8)$ |
$ 5, 5, 1, 1 $ | $132$ | $5$ | $( 3,10, 7, 4,12)( 5, 9, 8,11, 6)$ |
$ 11, 1 $ | $60$ | $11$ | $( 2, 3,11,10,12, 4, 6, 5, 8, 7, 9)$ |
$ 11, 1 $ | $60$ | $11$ | $( 2, 5,10, 9, 6,11, 7, 4, 3, 8,12)$ |
$ 2, 2, 2, 2, 2, 2 $ | $55$ | $2$ | $( 1, 2)( 3, 5)( 4, 8)( 6,10)( 7,11)( 9,12)$ |
$ 3, 3, 3, 3 $ | $110$ | $3$ | $( 1, 2, 3)( 4, 8,10)( 5, 7,12)( 6,11, 9)$ |
$ 6, 6 $ | $110$ | $6$ | $( 1, 2, 3, 5,11,10)( 4,12, 8, 6, 9, 7)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $660=2^{2} \cdot 3 \cdot 5 \cdot 11$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 660.13 | magma: IdentifyGroup(G);
|
Character table: |
2 2 . . . . 2 1 1 3 1 . . . . 1 1 1 5 1 1 1 . . . . . 11 1 . . 1 1 . . . 1a 5a 5b 11a 11b 2a 3a 6a 2P 1a 5b 5a 11b 11a 1a 3a 3a 3P 1a 5b 5a 11a 11b 2a 1a 2a 5P 1a 1a 1a 11a 11b 2a 3a 6a 7P 1a 5b 5a 11b 11a 2a 3a 6a 11P 1a 5a 5b 1a 1a 2a 3a 6a X.1 1 1 1 1 1 1 1 1 X.2 5 . . B /B 1 -1 1 X.3 5 . . /B B 1 -1 1 X.4 10 . . -1 -1 -2 1 1 X.5 10 . . -1 -1 2 1 -1 X.6 11 1 1 . . -1 -1 -1 X.7 12 A *A 1 1 . . . X.8 12 *A A 1 1 . . . A = E(5)^2+E(5)^3 = (-1-Sqrt(5))/2 = -1-b5 B = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9 = (-1+Sqrt(-11))/2 = b11 |
magma: CharacterTable(G);