# Properties

 Label 12T179 Degree $12$ Order $660$ Cyclic no Abelian no Solvable no Primitive yes $p$-group no Group: $\PSL(2,11)$

# Related objects

Show commands: Magma

magma: G := TransitiveGroup(12, 179);

## Group action invariants

 Degree $n$: $12$ magma: t, n := TransitiveGroupIdentification(G); n; Transitive number $t$: $179$ magma: t, n := TransitiveGroupIdentification(G); t; Group: $\PSL(2,11)$ CHM label: $L(2,11)$ Parity: $1$ magma: IsEven(G); Primitive: yes magma: IsPrimitive(G); Nilpotency class: $-1$ (not nilpotent) magma: NilpotencyClass(G); $\card{\Aut(F/K)}$: $1$ magma: Order(Centralizer(SymmetricGroup(n), G)); Generators: (1,2,3,4,5,6,7,8,9,10,12), (1,10)(2,5)(3,7)(4,8)(6,9)(11,12) magma: Generators(G);

## Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Degree 2: None

Degree 3: None

Degree 4: None

Degree 6: None

## Low degree siblings

11T5 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

## Conjugacy classes

 Cycle Type Size Order Representative $1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $1$ $1$ $()$ $5, 5, 1, 1$ $132$ $5$ $( 3, 4,10,12, 7)( 5,11, 9, 6, 8)$ $5, 5, 1, 1$ $132$ $5$ $( 3,10, 7, 4,12)( 5, 9, 8,11, 6)$ $11, 1$ $60$ $11$ $( 2, 3,11,10,12, 4, 6, 5, 8, 7, 9)$ $11, 1$ $60$ $11$ $( 2, 5,10, 9, 6,11, 7, 4, 3, 8,12)$ $2, 2, 2, 2, 2, 2$ $55$ $2$ $( 1, 2)( 3, 5)( 4, 8)( 6,10)( 7,11)( 9,12)$ $3, 3, 3, 3$ $110$ $3$ $( 1, 2, 3)( 4, 8,10)( 5, 7,12)( 6,11, 9)$ $6, 6$ $110$ $6$ $( 1, 2, 3, 5,11,10)( 4,12, 8, 6, 9, 7)$

magma: ConjugacyClasses(G);

## Group invariants

 Order: $660=2^{2} \cdot 3 \cdot 5 \cdot 11$ magma: Order(G); Cyclic: no magma: IsCyclic(G); Abelian: no magma: IsAbelian(G); Solvable: no magma: IsSolvable(G); Label: 660.13 magma: IdentifyGroup(G);
 Character table:  2 2 . . . . 2 1 1 3 1 . . . . 1 1 1 5 1 1 1 . . . . . 11 1 . . 1 1 . . . 1a 5a 5b 11a 11b 2a 3a 6a 2P 1a 5b 5a 11b 11a 1a 3a 3a 3P 1a 5b 5a 11a 11b 2a 1a 2a 5P 1a 1a 1a 11a 11b 2a 3a 6a 7P 1a 5b 5a 11b 11a 2a 3a 6a 11P 1a 5a 5b 1a 1a 2a 3a 6a X.1 1 1 1 1 1 1 1 1 X.2 5 . . B /B 1 -1 1 X.3 5 . . /B B 1 -1 1 X.4 10 . . -1 -1 -2 1 1 X.5 10 . . -1 -1 2 1 -1 X.6 11 1 1 . . -1 -1 -1 X.7 12 A *A 1 1 . . . X.8 12 *A A 1 1 . . . A = E(5)^2+E(5)^3 = (-1-Sqrt(5))/2 = -1-b5 B = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9 = (-1+Sqrt(-11))/2 = b11 

magma: CharacterTable(G);