Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $173$ | |
| CHM label : | $[3^{4}:2]4_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,10)(4,8)(7,11), (4,8,12), (1,4,7,10,5,8,11,2)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 8: $C_8$ 72: $C_3^2:C_8$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
12T173 x 7, 18T196 x 4, 24T1525 x 8, 36T1093 x 4, 36T1216 x 4, 36T1217 x 16, 36T1235 x 2, 36T1236 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 2, 2 $ | $81$ | $4$ | $( 1, 7, 5,11)( 2, 4,10, 8)( 3, 9)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $81$ | $4$ | $( 1,11)( 2, 4, 6, 8)( 3, 5, 7, 9)(10,12)$ |
| $ 8, 4 $ | $81$ | $8$ | $( 1, 4, 7,10, 5, 8,11, 2)( 3, 6, 9,12)$ |
| $ 8, 4 $ | $81$ | $8$ | $( 1, 4,11, 2)( 3,10, 9, 8, 7, 6, 5,12)$ |
| $ 8, 4 $ | $81$ | $8$ | $( 1,10,11, 4, 5, 2, 7, 8)( 3,12, 9, 6)$ |
| $ 8, 4 $ | $81$ | $8$ | $( 1, 6, 3, 8)( 2,11, 4, 9,10, 7,12, 5)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 712] |
| Character table: |
2 3 . . . . . . . . . . 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4 4 4 4 4 . . . . . . .
1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 2a 4a 4b 8a 8b 8c 8d
2P 1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 1a 2a 2a 4a 4a 4b 4b
3P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 2a 4b 4a 8c 8d 8a 8b
5P 1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 2a 4a 4b 8b 8a 8d 8c
7P 1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 2a 4b 4a 8d 8c 8b 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
X.3 1 1 1 1 1 1 1 1 1 1 1 -1 A -A B -B -/B /B
X.4 1 1 1 1 1 1 1 1 1 1 1 -1 A -A -B B /B -/B
X.5 1 1 1 1 1 1 1 1 1 1 1 -1 -A A -/B /B B -B
X.6 1 1 1 1 1 1 1 1 1 1 1 -1 -A A /B -/B -B B
X.7 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 A A -A -A
X.8 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -A -A A A
X.9 8 5 2 2 2 -1 -1 -1 -1 -4 -4 . . . . . . .
X.10 8 -4 -1 5 2 2 -1 -4 -1 -1 2 . . . . . . .
X.11 8 -4 5 -1 2 -4 -1 2 -1 2 -1 . . . . . . .
X.12 8 -1 -4 2 -1 2 -1 5 -1 2 -4 . . . . . . .
X.13 8 -1 2 -4 -1 5 -1 2 -1 -4 2 . . . . . . .
X.14 8 2 -4 -4 5 -1 -1 -1 -1 2 2 . . . . . . .
X.15 8 2 -1 2 -4 -4 -1 2 -1 -1 5 . . . . . . .
X.16 8 2 2 -1 -4 2 -1 -4 -1 5 -1 . . . . . . .
X.17 8 -1 -1 -1 -1 -1 -1 -1 8 -1 -1 . . . . . . .
X.18 8 -1 -1 -1 -1 -1 8 -1 -1 -1 -1 . . . . . . .
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)^3
|