Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $170$ | |
| CHM label : | $[3^{4}:2]4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,10)(4,8)(7,11), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ x 2 8: $C_4\times C_2$ 12: $D_{6}$ x 2 24: $S_3 \times C_4$ x 2 36: $S_3^2$, $C_3^2:C_4$ 72: 12T39, 12T40 216: 12T119 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
12T170 x 3, 18T195 x 4, 24T1522 x 4, 36T1090 x 4, 36T1091 x 4, 36T1092 x 4, 36T1149 x 4, 36T1196 x 4, 36T1199 x 4, 36T1228 x 4, 36T1229 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 6, 2, 2, 2 $ | $36$ | $6$ | $( 1, 7)( 2, 4,10,12, 6, 8)( 3, 9)( 5,11)$ |
| $ 6, 6 $ | $18$ | $6$ | $( 1, 3, 9,11, 5, 7)( 2, 4,10,12, 6, 8)$ |
| $ 6, 6 $ | $18$ | $6$ | $( 1, 3, 9,11, 5, 7)( 2,12, 6, 4,10, 8)$ |
| $ 6, 6 $ | $36$ | $6$ | $( 1,11, 9, 3, 5, 7)( 2,12,10, 4, 6, 8)$ |
| $ 6, 2, 2, 2 $ | $36$ | $6$ | $( 1,11, 9, 3, 5, 7)( 2, 8)( 4, 6)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,11)(10,12)$ |
| $ 4, 4, 4 $ | $27$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 12 $ | $54$ | $12$ | $( 1,12, 3, 6, 9, 8,11, 2, 5, 4, 7,10)$ |
| $ 12 $ | $54$ | $12$ | $( 1, 4,11, 2, 9, 8, 7, 6, 5,12, 3,10)$ |
| $ 4, 4, 4 $ | $27$ | $4$ | $( 1,12, 3,10)( 2, 9, 4,11)( 5, 8, 7, 6)$ |
| $ 4, 4, 4 $ | $27$ | $4$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 12 $ | $54$ | $12$ | $( 1,10, 7,12, 9, 6, 3, 8, 5, 2,11, 4)$ |
| $ 12 $ | $54$ | $12$ | $( 1, 6, 3, 8, 9,10,11,12, 5, 2, 7, 4)$ |
| $ 4, 4, 4 $ | $27$ | $4$ | $( 1, 6, 3, 4)( 2, 7,12, 5)( 8, 9,10,11)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 716] |
| Character table: Data not available. |