Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $166$ | |
| CHM label : | $[1/9.A(4)^{3}]3_{3}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,12)(6,9), (3,9)(6,12), (2,8,11)(3,6,12)(4,7,10), (1,3,11,7,6,2,10,9,5)(4,12,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 9: $C_9$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: None
Low degree siblings
12T166 x 6, 18T177 x 7, 36T954 x 7, 36T955 x 21, 36T956 x 7, 36T957 x 42Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,12)( 6, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 2, 5)( 3,12)( 6, 9)( 8,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 2, 5)( 3, 9)( 6,12)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 5)( 3,12)( 6, 9)( 7,10)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2,11)( 3, 9)( 5, 8)( 6,12)( 7,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $64$ | $3$ | $( 4, 7,10)( 5,11, 8)( 6, 9,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $64$ | $3$ | $( 4,10, 7)( 5, 8,11)( 6,12, 9)$ |
| $ 9, 3 $ | $64$ | $9$ | $( 1, 3,11, 7, 6, 2,10, 9, 5)( 4,12, 8)$ |
| $ 9, 3 $ | $64$ | $9$ | $( 1, 3, 8, 7, 9,11,10,12, 5)( 2, 4, 6)$ |
| $ 9, 3 $ | $64$ | $9$ | $( 1, 3, 5)( 2, 7,12,11, 4, 9, 8,10, 6)$ |
| $ 9, 3 $ | $64$ | $9$ | $( 1,11, 6,10, 5, 3, 7, 2, 9)( 4, 8,12)$ |
| $ 9, 3 $ | $64$ | $9$ | $( 1, 8, 6, 4, 5, 3,10,11, 9)( 2,12, 7)$ |
| $ 9, 3 $ | $64$ | $9$ | $( 1, 5, 3, 4,11,12,10, 8, 9)( 2, 6, 7)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8661] |
| Character table: |
2 6 6 6 6 6 6 6 6 . . . . . . . .
3 2 . . . . . . . 2 2 2 2 2 2 2 2
1a 2a 2b 2c 2d 2e 2f 2g 3a 3b 9a 9b 9c 9d 9e 9f
2P 1a 1a 1a 1a 1a 1a 1a 1a 3b 3a 9d 9f 9e 9c 9b 9a
3P 1a 2a 2b 2c 2d 2e 2f 2g 1a 1a 3b 3b 3b 3a 3a 3a
5P 1a 2a 2b 2c 2d 2e 2f 2g 3b 3a 9f 9e 9d 9a 9c 9b
7P 1a 2a 2b 2c 2d 2e 2f 2g 3a 3b 9b 9c 9a 9f 9d 9e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 A A A /A /A /A
X.3 1 1 1 1 1 1 1 1 1 1 /A /A /A A A A
X.4 1 1 1 1 1 1 1 1 A /A B C D /C /B /D
X.5 1 1 1 1 1 1 1 1 A /A C D B /D /C /B
X.6 1 1 1 1 1 1 1 1 A /A D B C /B /D /C
X.7 1 1 1 1 1 1 1 1 /A A /B /C /D C B D
X.8 1 1 1 1 1 1 1 1 /A A /D /B /C B D C
X.9 1 1 1 1 1 1 1 1 /A A /C /D /B D C B
X.10 9 5 1 1 1 -3 -3 -3 . . . . . . . .
X.11 9 1 1 -3 -3 5 -3 1 . . . . . . . .
X.12 9 -3 1 5 -3 1 1 -3 . . . . . . . .
X.13 9 -3 5 -3 1 -3 1 1 . . . . . . . .
X.14 9 -3 -3 1 5 1 -3 1 . . . . . . . .
X.15 9 1 -3 -3 1 1 5 -3 . . . . . . . .
X.16 9 1 -3 1 -3 -3 1 5 . . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(9)^4-E(9)^7
C = E(9)^7
D = E(9)^4
|