Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $151$ | |
| Group : | $C_4^2.D_{12}$ | |
| CHM label : | $1/2[1/4.cD(4)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,6,9,12), (1,11)(2,10)(3,9)(4,8)(5,7), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$, $D_{12}$ 48: $S_4\times C_2$ 96: 12T54, 12T62 192: 12T95 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$
Low degree siblings
12T151 x 3, 24T837, 24T854 x 2, 24T1259 x 2, 24T1260 x 2, 24T1261 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $4$ | $( 3, 6, 9,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $24$ | $2$ | $( 2, 3)( 4,10)( 5,12)( 6,11)( 8, 9)$ |
| $ 8, 2, 1, 1 $ | $24$ | $8$ | $( 2, 3, 5,12, 8, 9,11, 6)( 4,10)$ |
| $ 4, 4, 2, 1, 1 $ | $24$ | $4$ | $( 2, 3, 8, 9)( 4,10)( 5,12,11, 6)$ |
| $ 8, 2, 1, 1 $ | $24$ | $8$ | $( 2, 3,11, 6, 8, 9, 5,12)( 4,10)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 5, 8,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 8)( 3, 6, 9,12)( 5,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2,11, 8, 5)( 3, 6, 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 2)( 3, 6)( 4,11)( 5,10)( 7, 8)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)$ |
| $ 12 $ | $32$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 2, 3, 7, 8, 9)( 4, 5, 6,10,11,12)$ |
| $ 12 $ | $32$ | $12$ | $( 1, 2, 3,10,11,12, 7, 8, 9, 4, 5, 6)$ |
| $ 8, 2, 2 $ | $24$ | $8$ | $( 1, 2, 4,11, 7, 8,10, 5)( 3, 6)( 9,12)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 2, 7, 8)( 3, 6)( 4,11,10, 5)( 9,12)$ |
| $ 8, 2, 2 $ | $24$ | $8$ | $( 1, 2,10, 5, 7, 8, 4,11)( 3, 6)( 9,12)$ |
| $ 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 4, 2, 2, 2, 2 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 8)( 3,12, 9, 6)( 5,11)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2,11, 8, 5)( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 5558] |
| Character table: Data not available. |