Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $(C_6\times C_2):C_2$ | |
| CHM label : | $1/2[3:2]dD(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,8)(4,10)(6,12), (1,7)(3,9)(5,11), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Low degree siblings
12T13, 24T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 3, 3 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,10, 6)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 6, 3, 3 $ | $2$ | $6$ | $( 1, 9, 5)( 2, 4, 6, 8,10,12)( 3,11, 7)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 8] |
| Character table: |
2 3 2 2 2 2 2 2 3 2
3 1 1 . . 1 1 1 1 1
1a 2a 2b 4a 6a 6b 3a 2c 6c
2P 1a 1a 1a 2c 3a 3a 3a 1a 3a
3P 1a 2a 2b 4a 2c 2a 1a 2c 2a
5P 1a 2a 2b 4a 6a 6c 3a 2c 6b
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 1 -1
X.3 1 -1 1 -1 1 -1 1 1 -1
X.4 1 1 -1 -1 1 1 1 1 1
X.5 2 -2 . . -1 1 -1 2 1
X.6 2 2 . . -1 -1 -1 2 -1
X.7 2 . . . -2 . 2 -2 .
X.8 2 . . . 1 A -1 -2 -A
X.9 2 . . . 1 -A -1 -2 A
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|