Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $142$ | |
| Group : | $C_2^5.(C_2\times C_6)$ | |
| CHM label : | $[1/4.eD(4)^{3}]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,12)(6,9), (3,9)(6,12), (1,7)(3,9)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 8: $D_{4}$ 12: $A_4$, $C_6\times C_2$ 24: $A_4\times C_2$ x 3, $D_4 \times C_3$ 48: $C_2^2 \times A_4$ 96: $C_2^4:C_6$, 12T51 192: 12T87 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4\times C_2$
Low degree siblings
12T134 x 4, 12T142 x 3, 16T719 x 4, 24T1156 x 4, 24T1157 x 4, 24T1158 x 8, 24T1159 x 4, 24T1160 x 8, 24T1161 x 8, 24T1162 x 8, 24T1163 x 4, 24T1164 x 4, 24T1165 x 4, 24T1166 x 4, 24T1167 x 4, 24T1168 x 4, 24T1169 x 4, 24T1170 x 4, 24T1171 x 2, 24T1172 x 2, 24T1220 x 4, 24T1221 x 4, 24T1222 x 2, 24T1223 x 2, 32T9328 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3, 6)( 9,12)$ |
| $ 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 3, 6, 9,12)( 4,10)( 5,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 4, 4, 2, 1, 1 $ | $24$ | $4$ | $( 2, 5, 8,11)( 3, 6, 9,12)( 4,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 5)( 3, 9)( 6,12)( 8,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 5)( 3,12)( 6, 9)( 8,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 8)( 3, 6)( 5,11)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 2, 3)( 4, 5, 6,10,11,12)( 7, 8, 9)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 2, 3)( 4,11, 6)( 5,12,10)( 7, 8, 9)$ |
| $ 12 $ | $32$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 3, 7, 8, 9)( 4,11, 6,10, 5,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 3, 2)( 4, 6,11)( 5,10,12)( 7, 9, 8)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 3, 2)( 4,12,11,10, 6, 5)( 7, 9, 8)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 3, 5,10,12, 2)( 4, 6, 8, 7, 9,11)$ |
| $ 12 $ | $32$ | $12$ | $( 1, 3, 5, 4,12, 8, 7, 9,11,10, 6, 2)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 3, 8, 7, 9, 2)( 4, 6, 5,10,12,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 9)( 6,12)( 7,10)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 8)( 3, 6)( 5,11)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 8)( 3, 9)( 5,11)( 6,12)( 7,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 5790] |
| Character table: Data not available. |