Properties

Label 12T142
Order \(384\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_2^5.(C_2\times C_6)$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $142$
Group :  $C_2^5.(C_2\times C_6)$
CHM label :  $[1/4.eD(4)^{3}]3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,12)(6,9), (3,9)(6,12), (1,7)(3,9)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
8:  $D_{4}$
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3, $D_4 \times C_3$
48:  $C_2^2 \times A_4$
96:  $C_2^4:C_6$, 12T51
192:  12T87

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 4: None

Degree 6: $A_4\times C_2$

Low degree siblings

12T134 x 4, 12T142 x 3, 16T719 x 4, 24T1156 x 4, 24T1157 x 4, 24T1158 x 8, 24T1159 x 4, 24T1160 x 8, 24T1161 x 8, 24T1162 x 8, 24T1163 x 4, 24T1164 x 4, 24T1165 x 4, 24T1166 x 4, 24T1167 x 4, 24T1168 x 4, 24T1169 x 4, 24T1170 x 4, 24T1171 x 2, 24T1172 x 2, 24T1220 x 4, 24T1221 x 4, 24T1222 x 2, 24T1223 x 2, 32T9328 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 4,10)( 5,11)( 6,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 3, 6)( 9,12)$
$ 4, 2, 2, 1, 1, 1, 1 $ $24$ $4$ $( 3, 6, 9,12)( 4,10)( 5,11)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 3, 9)( 6,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $6$ $2$ $( 2, 5)( 3, 6)( 8,11)( 9,12)$
$ 4, 4, 2, 1, 1 $ $24$ $4$ $( 2, 5, 8,11)( 3, 6, 9,12)( 4,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $6$ $2$ $( 2, 5)( 3, 9)( 6,12)( 8,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $6$ $2$ $( 2, 5)( 3,12)( 6, 9)( 8,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $6$ $2$ $( 2, 8)( 3, 6)( 5,11)( 9,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $3$ $2$ $( 2, 8)( 3, 9)( 5,11)( 6,12)$
$ 6, 3, 3 $ $32$ $6$ $( 1, 2, 3)( 4, 5, 6,10,11,12)( 7, 8, 9)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 2, 3)( 4,11, 6)( 5,12,10)( 7, 8, 9)$
$ 12 $ $32$ $12$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$
$ 6, 6 $ $32$ $6$ $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$
$ 6, 6 $ $16$ $6$ $( 1, 2, 3, 7, 8, 9)( 4,11, 6,10, 5,12)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 3, 2)( 4, 6,11)( 5,10,12)( 7, 9, 8)$
$ 6, 3, 3 $ $32$ $6$ $( 1, 3, 2)( 4,12,11,10, 6, 5)( 7, 9, 8)$
$ 6, 6 $ $32$ $6$ $( 1, 3, 5,10,12, 2)( 4, 6, 8, 7, 9,11)$
$ 12 $ $32$ $12$ $( 1, 3, 5, 4,12, 8, 7, 9,11,10, 6, 2)$
$ 6, 6 $ $16$ $6$ $( 1, 3, 8, 7, 9, 2)( 4, 6, 5,10,12,11)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$
$ 4, 4, 4 $ $8$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 5)( 3, 9)( 6,12)( 7,10)( 8,11)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 8)( 3, 6)( 5,11)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 8)( 3, 9)( 5,11)( 6,12)( 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$

Group invariants

Order:  $384=2^{7} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [384, 5790]
Character table: Data not available.