Properties

Label 12T141
Order \(384\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_4^2.(C_3\times D_4)$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $141$
Group :  $C_4^2.(C_3\times D_4)$
CHM label :  $[1/4.cD(4)^{3}]3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7)(3,9)(5,11), (3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
8:  $D_{4}$
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3, $D_4 \times C_3$
48:  $C_2^2 \times A_4$
96:  12T51, 12T60
192:  12T89

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 4: None

Degree 6: $A_4\times C_2$

Low degree siblings

12T141 x 7, 24T1215 x 4, 24T1216 x 8, 24T1217 x 8, 24T1218 x 4, 24T1219 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 4,10)( 5,11)( 6,12)$
$ 4, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $4$ $( 3, 6, 9,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $24$ $2$ $( 3, 6)( 4,10)( 5,11)( 9,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 3, 9)( 6,12)$
$ 4, 4, 1, 1, 1, 1 $ $6$ $4$ $( 2, 5, 8,11)( 3, 6, 9,12)$
$ 2, 2, 2, 2, 2, 1, 1 $ $24$ $2$ $( 2, 5)( 3, 6)( 4,10)( 8,11)( 9,12)$
$ 4, 2, 2, 1, 1, 1, 1 $ $6$ $4$ $( 2, 5, 8,11)( 3, 9)( 6,12)$
$ 4, 4, 1, 1, 1, 1 $ $6$ $4$ $( 2, 5, 8,11)( 3,12, 9, 6)$
$ 4, 2, 2, 1, 1, 1, 1 $ $6$ $4$ $( 2, 8)( 3, 6, 9,12)( 5,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $3$ $2$ $( 2, 8)( 3, 9)( 5,11)( 6,12)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)$
$ 6, 3, 3 $ $32$ $6$ $( 1, 2, 3)( 4,11, 6,10, 5,12)( 7, 8, 9)$
$ 12 $ $32$ $12$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$
$ 6, 6 $ $32$ $6$ $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$
$ 6, 6 $ $16$ $6$ $( 1, 2, 3, 7, 8, 9)( 4, 5, 6,10,11,12)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)$
$ 6, 3, 3 $ $32$ $6$ $( 1, 3, 2)( 4,12, 5,10, 6,11)( 7, 9, 8)$
$ 12 $ $32$ $12$ $( 1, 3, 5, 4, 6, 8, 7, 9,11,10,12, 2)$
$ 6, 6 $ $32$ $6$ $( 1, 3, 5,10, 6, 2)( 4,12, 8, 7, 9,11)$
$ 6, 6 $ $16$ $6$ $( 1, 3, 8, 7, 9, 2)( 4, 6,11,10,12, 5)$
$ 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$
$ 4, 4, 4 $ $2$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$
$ 4, 4, 2, 2 $ $6$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 9)( 6,12)$
$ 4, 4, 4 $ $6$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$
$ 4, 2, 2, 2, 2 $ $6$ $4$ $( 1, 4, 7,10)( 2, 8)( 3, 9)( 5,11)( 6,12)$
$ 4, 4, 2, 2 $ $6$ $4$ $( 1, 4, 7,10)( 2, 8)( 3,12, 9, 6)( 5,11)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$

Group invariants

Order:  $384=2^{7} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [384, 5797]
Character table: Data not available.