Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $138$ | |
| Group : | $C_2\times C_4^2:C_3:C_2^2$ | |
| CHM label : | $[(1/2.2^{2})^{3}]2S_{4}(6)_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,11,5,3,9,7)(2,8,6,12,10,4), (4,10)(5,11)(6,9)(7,8), (4,8)(5,9)(6,10)(7,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $C_2^3$ 12: $D_{6}$ x 3 24: $S_4$, $S_3 \times C_2^2$ 48: $S_4\times C_2$ x 3 96: 12T48 192: 12T112 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$
Low degree siblings
12T138 x 3, 12T140 x 4, 24T1199 x 2, 24T1200 x 4, 24T1201 x 2, 24T1202 x 8, 24T1203 x 8, 24T1207 x 2, 24T1208 x 4, 24T1209 x 2, 24T1210 x 4, 24T1211 x 8, 24T1212 x 8, 24T1213 x 8, 24T1214 x 8, 32T9440 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 4, 6, 5, 7)( 8,10, 9,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 4, 6, 5, 7)( 8,11, 9,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $12$ | $4$ | $( 4, 8, 5, 9)( 6,10, 7,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 6, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 6, 7)( 8,11)( 9,10)$ |
| $ 8, 2, 1, 1 $ | $24$ | $8$ | $( 2, 3)( 4, 8, 6,11, 5, 9, 7,10)$ |
| $ 8, 2, 1, 1 $ | $24$ | $8$ | $( 2, 3)( 4, 8, 7,10, 5, 9, 6,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,12)( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,12)( 4, 6)( 5, 7)( 8,11)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4, 8)( 5, 9)( 6,11)( 7,10)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3,12)( 4, 8, 5, 9)( 6,11, 7,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3,12)( 4,10, 5,11)( 6, 8, 7, 9)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,10, 9,11)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,11, 9,10)$ |
| $ 8, 4 $ | $24$ | $8$ | $( 1, 2,12, 3)( 4, 8, 6,10, 5, 9, 7,11)$ |
| $ 8, 4 $ | $24$ | $8$ | $( 1, 2,12, 3)( 4, 8, 7,11, 5, 9, 6,10)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 4, 8, 2, 6,11)( 3, 7,10,12, 5, 9)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 4, 8, 3, 7,10)( 2, 6,11,12, 5, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 4)( 2, 7)( 3, 6)( 5,12)( 8, 9)(10,11)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 4, 8)( 2, 7,11)( 3, 6,10)( 5, 9,12)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 7,11, 3, 6,10)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 4,12, 5)( 2, 7, 3, 6)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 17949] |
| Character table: Data not available. |