Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $135$ | |
| Group : | $C_2^4:C_3.D_4$ | |
| CHM label : | $[2^{6}]D_{6}=2wrD_{6}(6)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,11)(2,8)(3,9)(4,6)(5,7)(10,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$ x 3, $(C_6\times C_2):C_2$ 48: $S_4\times C_2$ x 3 96: $V_4^2:S_3$, 12T49 x 3 192: 12T100 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_3$
Low degree siblings
12T135, 12T148 x 6, 16T765 x 2, 24T1003 x 6, 24T1004 x 3, 24T1005 x 3, 24T1008 x 3, 24T1010 x 3, 24T1123 x 6, 24T1173 x 6, 24T1174 x 6, 24T1175 x 2, 24T1176 x 12, 24T1177 x 12, 24T1178 x 2, 24T1179 x 6, 24T1180 x 3, 24T1181 x 2, 24T1182 x 2, 24T1183, 24T1250 x 12, 24T1251 x 12, 24T1252 x 3, 24T1253 x 3, 32T9368Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 6, 7)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 3)( 6, 7)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3,12)( 4,10, 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 8, 7, 9)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3,12)( 4,10, 5,11)( 6, 8, 7, 9)$ |
| $ 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2,12, 3)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 2,12, 3)( 4,10, 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $24$ | $4$ | $( 1, 2,12, 3)( 4,10)( 5,11)( 6, 8, 7, 9)$ |
| $ 4, 4, 4 $ | $24$ | $4$ | $( 1, 2,12, 3)( 4,10, 5,11)( 6, 8, 7, 9)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 4, 8)( 2, 6,10)( 3, 7,11)( 5, 9,12)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 4, 8)( 2, 6,10, 3, 7,11)( 5, 9,12)$ |
| $ 6, 3, 3 $ | $32$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 6,10)( 3, 7,11)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 6,10, 3, 7,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 20100] |
| Character table: Data not available. |