Show commands: Magma
Group invariants
| Abstract group: | $C_3\wr C_4$ |
| |
| Order: | $324=2^{2} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $131$ |
| |
| CHM label: | $[3^{4}]4=3wr4$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(4,8,12)$, $(1,4,7,10)(2,5,8,11)(3,6,9,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $S_3$, $C_6$ $12$: $C_{12}$, $C_3 : C_4$ $18$: $S_3\times C_3$ $36$: $C_3^2:C_4$, $C_3\times (C_3 : C_4)$ $108$: 12T72, 12T73 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
12T131 x 3, 18T123 x 4, 36T497 x 4, 36T514 x 2, 36T527 x 2, 36T532 x 4, 36T536 x 4, 36T543 x 4, 36T544 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| 3A1 | $3^{4}$ | $1$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| 3A-1 | $3^{4}$ | $1$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| 3B | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| 3C1 | $3^{2},1^{6}$ | $2$ | $3$ | $4$ | $( 2,10, 6)( 4,12, 8)$ |
| 3C-1 | $3^{2},1^{6}$ | $2$ | $3$ | $4$ | $( 2, 6,10)( 4, 8,12)$ |
| 3D | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
| 3E | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 2,10, 6)( 4, 8,12)$ |
| 3F1 | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 1, 9, 5)( 4, 8,12)$ |
| 3F-1 | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 3,11, 7)( 4, 8,12)$ |
| 3G1 | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 1, 9, 5)( 2,10, 6)$ |
| 3G-1 | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 3, 7,11)( 4, 8,12)$ |
| 3H1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)$ |
| 3H-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 4,12, 8)$ |
| 3I1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 5, 9)( 3, 7,11)( 4,12, 8)$ |
| 3I-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)$ |
| 3J1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| 3J-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 3, 7,11)$ |
| 3K1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 5, 9)( 2, 6,10)( 4,12, 8)$ |
| 3K-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 5, 9)( 2,10, 6)( 3,11, 7)$ |
| 3L1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| 3L-1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| 3M1 | $3,1^{9}$ | $4$ | $3$ | $2$ | $( 3, 7,11)$ |
| 3M-1 | $3,1^{9}$ | $4$ | $3$ | $2$ | $( 4,12, 8)$ |
| 4A1 | $4^{3}$ | $27$ | $4$ | $9$ | $( 1, 6,11, 8)( 2, 7, 4, 9)( 3,12, 5,10)$ |
| 4A-1 | $4^{3}$ | $27$ | $4$ | $9$ | $( 1, 8,11, 6)( 2, 9, 4, 7)( 3,10, 5,12)$ |
| 6A1 | $6^{2}$ | $9$ | $6$ | $10$ | $( 1, 3, 9,11, 5, 7)( 2, 8,10, 4, 6,12)$ |
| 6A-1 | $6^{2}$ | $9$ | $6$ | $10$ | $( 1, 7, 5,11, 9, 3)( 2,12, 6, 4,10, 8)$ |
| 6B | $6^{2}$ | $18$ | $6$ | $10$ | $( 1,11, 9, 7, 5, 3)( 2, 4, 6, 8,10,12)$ |
| 6C1 | $6,2^{3}$ | $18$ | $6$ | $8$ | $( 1, 7)( 2,12,10, 8, 6, 4)( 3, 9)( 5,11)$ |
| 6C-1 | $6,2^{3}$ | $18$ | $6$ | $8$ | $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$ |
| 12A1 | $12$ | $27$ | $12$ | $11$ | $( 1, 4, 3, 6, 9,12,11, 2, 5, 8, 7,10)$ |
| 12A-1 | $12$ | $27$ | $12$ | $11$ | $( 1,10, 7, 8, 5, 2,11,12, 9, 6, 3, 4)$ |
| 12A5 | $12$ | $27$ | $12$ | $11$ | $( 1,12, 7, 6, 5, 4,11,10, 9, 8, 3, 2)$ |
| 12A-5 | $12$ | $27$ | $12$ | $11$ | $( 1, 2, 3, 8, 9,10,11, 4, 5, 6, 7,12)$ |
Malle's constant $a(G)$: $1/2$
Character table
36 x 36 character table
Regular extensions
Data not computed