Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $131$ | |
| Group : | $C_3\times C_3^2:(C_3:C_4)$ | |
| CHM label : | $[3^{4}]4=3wr4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $S_3$, $C_6$ 12: $C_{12}$, $C_3 : C_4$ 18: $S_3\times C_3$ 36: $C_3^2:C_4$, $C_3\times (C_3 : C_4)$ 108: 12T72, 12T73 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
12T131 x 3, 18T123 x 4, 36T497 x 4, 36T514 x 2, 36T527 x 2, 36T532 x 4, 36T536 x 4, 36T543 x 4, 36T544 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 4, 8,12)$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 2,10, 6)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 4, 4, 4 $ | $27$ | $4$ | $( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10,11,12)$ |
| $ 12 $ | $27$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 12 $ | $27$ | $12$ | $( 1, 2, 3, 4, 9,10,11,12, 5, 6, 7, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)$ |
| $ 6, 2, 2, 2 $ | $18$ | $6$ | $( 1, 3)( 2, 4, 6, 8,10,12)( 5, 7)( 9,11)$ |
| $ 6, 2, 2, 2 $ | $18$ | $6$ | $( 1, 3)( 2, 4,10,12, 6, 8)( 5, 7)( 9,11)$ |
| $ 6, 6 $ | $9$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 6 $ | $18$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4,10,12, 6, 8)$ |
| $ 6, 6 $ | $9$ | $6$ | $( 1, 3, 9,11, 5, 7)( 2, 4,10,12, 6, 8)$ |
| $ 4, 4, 4 $ | $27$ | $4$ | $( 1, 4, 3, 2)( 5, 8, 7, 6)( 9,12,11,10)$ |
| $ 12 $ | $27$ | $12$ | $( 1, 4, 7, 6, 5, 8,11,10, 9,12, 3, 2)$ |
| $ 12 $ | $27$ | $12$ | $( 1, 4,11,10, 9,12, 7, 6, 5, 8, 3, 2)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
Group invariants
| Order: | $324=2^{2} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [324, 162] |
| Character table: Data not available. |