Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $(C_6\times C_2):C_2$ | |
| CHM label : | $1/2[3:2]eD(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,11)(2,10)(3,9)(4,8)(5,7), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Low degree siblings
12T15, 24T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 6, 5,10, 9, 2)( 3, 8, 7,12,11, 4)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 8] |
| Character table: |
2 3 2 2 2 2 2 2 2 3
3 1 . . 1 1 1 1 1 1
1a 2a 4a 6a 6b 2b 3a 6c 2c
2P 1a 1a 2c 3a 3a 1a 3a 3a 1a
3P 1a 2a 4a 2b 2c 2b 1a 2b 2c
5P 1a 2a 4a 6c 6b 2b 3a 6a 2c
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 1
X.4 1 1 -1 -1 1 -1 1 -1 1
X.5 2 . . 1 -1 -2 -1 1 2
X.6 2 . . -1 -1 2 -1 -1 2
X.7 2 . . . -2 . 2 . -2
X.8 2 . . A 1 . -1 -A -2
X.9 2 . . -A 1 . -1 A -2
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|