Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $128$ | |
| Group : | $A_4\wr C_2$ | |
| CHM label : | $[1/4E(4)^{3}:3]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(3,12)(4,7)(6,9), (1,7,10)(2,5,11)(3,6,9), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: None
Low degree siblings
8T42, 12T126, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1 $ | $16$ | $3$ | $( 4, 7,10)( 5,11, 8)( 6, 9,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $16$ | $3$ | $( 4,10, 7)( 5, 8,11)( 6,12, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 5,12)( 6,11)( 8, 9)$ |
| $ 6, 3, 2, 1 $ | $48$ | $6$ | $( 2, 3)( 4, 7,10)( 5, 6, 8,12,11, 9)$ |
| $ 6, 3, 2, 1 $ | $48$ | $6$ | $( 2, 3)( 4,10, 7)( 5, 9,11,12, 8, 6)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 2, 5)( 3,12)( 6, 9)( 8,11)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2, 3)( 4, 5, 9)( 6,10, 8)( 7,11,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2, 3)( 4, 8,12)( 5, 6, 7)( 9,10,11)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 2, 3)( 4,11, 6)( 5,12,10)( 7, 8, 9)$ |
| $ 4, 4, 2, 2 $ | $36$ | $4$ | $( 1, 2, 4,11)( 3, 6)( 5, 7, 8,10)( 9,12)$ |
| $ 6, 6 $ | $24$ | $6$ | $( 1, 2, 6, 7,11, 9)( 3, 4, 5,12,10, 8)$ |
| $ 6, 6 $ | $24$ | $6$ | $( 1, 2, 6,10,11,12)( 3, 4, 8, 9, 7, 5)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 9)( 6,12)( 7,10)( 8,11)$ |
Group invariants
| Order: | $288=2^{5} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [288, 1025] |
| Character table: |
2 5 1 1 3 1 1 5 2 2 . 3 2 2 4
3 2 2 2 1 1 1 . 2 2 2 . 1 1 1
1a 3a 3b 2a 6a 6b 2b 3c 3d 3e 4a 6c 6d 2c
2P 1a 3b 3a 1a 3b 3a 1a 3d 3c 3e 2b 3d 3c 1a
3P 1a 1a 1a 2a 2a 2a 2b 1a 1a 1a 4a 2c 2c 2c
5P 1a 3b 3a 2a 6b 6a 2b 3d 3c 3e 4a 6d 6c 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1 1 1 1 -1 1 1 1
X.3 1 A /A -1 -A -/A 1 /A A 1 -1 /A A 1
X.4 1 /A A -1 -/A -A 1 A /A 1 -1 A /A 1
X.5 1 A /A 1 A /A 1 /A A 1 1 /A A 1
X.6 1 /A A 1 /A A 1 A /A 1 1 A /A 1
X.7 2 2 2 . . . 2 -1 -1 -1 . -1 -1 2
X.8 2 B /B . . . 2 -A -/A -1 . -A -/A 2
X.9 2 /B B . . . 2 -/A -A -1 . -/A -A 2
X.10 6 . . . . . -2 3 3 . . -1 -1 2
X.11 6 . . . . . -2 C /C . . -A -/A 2
X.12 6 . . . . . -2 /C C . . -/A -A 2
X.13 9 . . -3 . . 1 . . . 1 . . -3
X.14 9 . . 3 . . 1 . . . -1 . . -3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
C = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|