Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $126$ | |
| Group : | $A_4\wr C_2$ | |
| CHM label : | $[A_{4}^{2}]2=A_{4}wr2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,8)(4,10), (2,6,10)(4,8,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $S_3\times C_3$
Low degree siblings
8T42, 12T128, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 4, 6)( 8,10,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $24$ | $6$ | $( 2, 4, 6)( 3, 9)( 5,11)( 8,10,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6, 4)( 8,12,10)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $24$ | $6$ | $( 2, 6, 4)( 3, 9)( 5,11)( 8,12,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 4)( 5,12)( 6,11)( 7, 8)( 9,10)$ |
| $ 4, 4, 2, 2 $ | $36$ | $4$ | $( 1, 2)( 3, 4, 9,10)( 5,12,11, 6)( 7, 8)$ |
| $ 6, 6 $ | $48$ | $6$ | $( 1, 2, 3, 4, 5,12)( 6, 7, 8, 9,10,11)$ |
| $ 6, 6 $ | $48$ | $6$ | $( 1, 2, 5,12, 3, 4)( 6, 9,10, 7, 8,11)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11)( 8,10,12)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 3, 5)( 2, 6, 4)( 7, 9,11)( 8,12,10)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,11, 9)( 8,12,10)$ |
Group invariants
| Order: | $288=2^{5} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [288, 1025] |
| Character table: |
2 5 4 5 2 2 2 2 3 3 1 1 1 . 1
3 2 1 . 2 1 2 1 1 . 1 1 2 2 2
1a 2a 2b 3a 6a 3b 6b 2c 4a 6c 6d 3c 3d 3e
2P 1a 1a 1a 3b 3b 3a 3a 1a 2b 3c 3e 3e 3d 3c
3P 1a 2a 2b 1a 2a 1a 2a 2c 4a 2c 2c 1a 1a 1a
5P 1a 2a 2b 3b 6b 3a 6a 2c 4a 6d 6c 3e 3d 3c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1
X.3 1 1 1 A A /A /A -1 -1 -A -/A /A 1 A
X.4 1 1 1 /A /A A A -1 -1 -/A -A A 1 /A
X.5 1 1 1 A A /A /A 1 1 A /A /A 1 A
X.6 1 1 1 /A /A A A 1 1 /A A A 1 /A
X.7 2 2 2 -1 -1 -1 -1 . . . . 2 -1 2
X.8 2 2 2 -A -A -/A -/A . . . . C -1 /C
X.9 2 2 2 -/A -/A -A -A . . . . /C -1 C
X.10 6 2 -2 3 -1 3 -1 . . . . . . .
X.11 6 2 -2 B -A /B -/A . . . . . . .
X.12 6 2 -2 /B -/A B -A . . . . . . .
X.13 9 -3 1 . . . . -3 1 . . . . .
X.14 9 -3 1 . . . . 3 -1 . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
C = 2*E(3)
= -1+Sqrt(-3) = 2b3
|