Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $125$ | |
| Group : | $D_6\wr C_2$ | |
| CHM label : | $[S(3)^{2}]D(4)=D(6)wr2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(3,9)(5,11), (2,6,10)(4,8,12), (2,10)(4,8), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 72: $C_3^2:D_4$ 144: 12T77 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $C_3^2:D_4$
Low degree siblings
12T125 x 7, 24T594 x 2, 24T655 x 2, 24T686 x 4, 24T687 x 4, 24T688 x 8, 24T689 x 4, 24T690 x 4, 24T691 x 4, 36T400 x 4, 36T432 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,12)( 6,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4,12)( 5, 9)( 6,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 4)( 6,12)( 8,10)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $4$ | $6$ | $( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 2, 4)( 3,11)( 5, 9)( 6,12)( 8,10)$ |
| $ 6, 2, 2, 1, 1 $ | $12$ | $6$ | $( 2, 4, 6, 8,10,12)( 3,11)( 5, 9)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $12$ | $6$ | $( 2, 6,10)( 3,11)( 4, 8,12)( 5, 9)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2, 8)( 3,11)( 4,10)( 5, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2 $ | $36$ | $4$ | $( 1, 2)( 3, 4,11,12)( 5, 6, 9,10)( 7, 8)$ |
| $ 4, 4, 4 $ | $36$ | $4$ | $( 1, 2, 3, 4)( 5, 6,11,12)( 7, 8, 9,10)$ |
| $ 12 $ | $24$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $24$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3, 4, 9,10)( 5, 6,11,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 2, 2, 2 $ | $12$ | $6$ | $( 1, 3)( 2, 4, 6, 8,10,12)( 5,11)( 7, 9)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 3, 3, 2, 2, 2 $ | $12$ | $6$ | $( 1, 3)( 2, 6,10)( 4, 8,12)( 5,11)( 7, 9)$ |
| $ 6, 3, 3 $ | $8$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 6,10)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 8)( 4,10)( 5,11)( 6,12)( 7, 9)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 2, 2, 2 $ | $4$ | $6$ | $( 1, 5, 9)( 2, 8)( 3, 7,11)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $288=2^{5} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [288, 889] |
| Character table: Data not available. |