Properties

Label 12T125
Order \(288\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $D_6\wr C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $125$
Group :  $D_6\wr C_2$
CHM label :  $[S(3)^{2}]D(4)=D(6)wr2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7)(3,9)(5,11), (2,6,10)(4,8,12), (2,10)(4,8), (1,4,7,10)(2,5,8,11)(3,6,9,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
72:  $C_3^2:D_4$
144:  12T77

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $D_{4}$

Degree 6: $C_3^2:D_4$

Low degree siblings

12T125 x 7, 24T594 x 2, 24T655 x 2, 24T686 x 4, 24T687 x 4, 24T688 x 8, 24T689 x 4, 24T690 x 4, 24T691 x 4, 36T400 x 4, 36T432 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 4,12)( 6,10)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $9$ $2$ $( 3,11)( 4,12)( 5, 9)( 6,10)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 2, 4)( 6,12)( 8,10)$
$ 6, 1, 1, 1, 1, 1, 1 $ $4$ $6$ $( 2, 4, 6, 8,10,12)$
$ 2, 2, 2, 2, 2, 1, 1 $ $18$ $2$ $( 2, 4)( 3,11)( 5, 9)( 6,12)( 8,10)$
$ 6, 2, 2, 1, 1 $ $12$ $6$ $( 2, 4, 6, 8,10,12)( 3,11)( 5, 9)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $4$ $3$ $( 2, 6,10)( 4, 8,12)$
$ 3, 3, 2, 2, 1, 1 $ $12$ $6$ $( 2, 6,10)( 3,11)( 4, 8,12)( 5, 9)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 2, 8)( 4,10)( 6,12)$
$ 2, 2, 2, 2, 2, 1, 1 $ $6$ $2$ $( 2, 8)( 3,11)( 4,10)( 5, 9)( 6,12)$
$ 2, 2, 2, 2, 2, 2 $ $12$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$
$ 4, 4, 2, 2 $ $36$ $4$ $( 1, 2)( 3, 4,11,12)( 5, 6, 9,10)( 7, 8)$
$ 4, 4, 4 $ $36$ $4$ $( 1, 2, 3, 4)( 5, 6,11,12)( 7, 8, 9,10)$
$ 12 $ $24$ $12$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$
$ 6, 6 $ $24$ $6$ $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$
$ 4, 4, 4 $ $12$ $4$ $( 1, 2, 7, 8)( 3, 4, 9,10)( 5, 6,11,12)$
$ 2, 2, 2, 2, 2, 2 $ $9$ $2$ $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)$
$ 6, 2, 2, 2 $ $12$ $6$ $( 1, 3)( 2, 4, 6, 8,10,12)( 5,11)( 7, 9)$
$ 6, 6 $ $4$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$
$ 3, 3, 2, 2, 2 $ $12$ $6$ $( 1, 3)( 2, 6,10)( 4, 8,12)( 5,11)( 7, 9)$
$ 6, 3, 3 $ $8$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 6,10)( 4, 8,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 3)( 2, 8)( 4,10)( 5,11)( 6,12)( 7, 9)$
$ 6, 2, 2, 2 $ $4$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$
$ 3, 3, 3, 3 $ $4$ $3$ $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$
$ 3, 3, 2, 2, 2 $ $4$ $6$ $( 1, 5, 9)( 2, 8)( 3, 7,11)( 4,10)( 6,12)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$

Group invariants

Order:  $288=2^{5} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [288, 889]
Character table: Data not available.