Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $112$ | |
| Group : | $C_4^2:C_3:C_2^2$ | |
| CHM label : | $[1/2[1/2.2^{2}]^{3}]2S_{4}(6)_{8}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3)(6,7)(8,9), (2,3)(4,10)(5,11)(6,7), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,3)(2,12)(4,10)(5,11)(6,8)(7,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$
Low degree siblings
12T112, 12T113 x 2, 12T114 x 2, 12T115 x 2, 16T431, 24T530 x 2, 24T531 x 2, 24T532 x 2, 24T533 x 2, 24T534 x 2, 24T535, 24T536 x 2, 24T537 x 2, 24T538 x 2, 24T539, 24T540, 24T541, 32T2145, 32T2146 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 4,11)( 5,10)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $12$ | $4$ | $( 2, 4, 3, 5)( 8,11, 9,10)$ |
| $ 8, 2, 1, 1 $ | $24$ | $8$ | $( 2, 4, 9,11, 3, 5, 8,10)( 6, 7)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 8, 3, 9)( 4,10, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4, 5)( 6, 8)( 7, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 9)( 7, 8)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 2, 4)( 3, 5,12)( 6, 8,11)( 7, 9,10)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 2, 4, 6, 9,11)( 3, 5, 7, 8,10,12)$ |
| $ 8, 4 $ | $24$ | $8$ | $( 1, 2, 6, 8,12, 3, 7, 9)( 4,11, 5,10)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2,12, 3)( 4,11)( 5,10)( 6, 9, 7, 8)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 6,12, 7)( 2, 3)( 4,11, 5,10)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 8)( 3, 9)( 4,10)( 5,11)( 7,12)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 956] |
| Character table: |
2 6 4 6 4 3 5 4 4 1 1 3 4 5 4
3 1 . . . . . . . 1 1 . . . 1
1a 2a 2b 4a 8a 4b 2c 2d 3a 6a 8b 4c 4d 2e
2P 1a 1a 1a 2b 4b 2b 1a 1a 3a 3a 4d 2b 2b 1a
3P 1a 2a 2b 4a 8a 4b 2c 2d 1a 2e 8b 4c 4d 2e
5P 1a 2a 2b 4a 8a 4b 2c 2d 3a 6a 8b 4c 4d 2e
7P 1a 2a 2b 4a 8a 4b 2c 2d 3a 6a 8b 4c 4d 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1
X.3 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1
X.4 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1
X.5 2 -2 2 . . 2 . . -1 1 . . 2 -2
X.6 2 2 2 . . 2 . . -1 -1 . . 2 2
X.7 3 -1 3 -1 1 -1 -1 -1 . . 1 -1 -1 3
X.8 3 -1 3 1 -1 -1 1 1 . . -1 1 -1 3
X.9 3 1 3 -1 -1 -1 -1 1 . . 1 1 -1 -3
X.10 3 1 3 1 1 -1 1 -1 . . -1 -1 -1 -3
X.11 6 . -2 -2 . 2 2 . . . . . -2 .
X.12 6 . -2 . . -2 . -2 . . . 2 2 .
X.13 6 . -2 . . -2 . 2 . . . -2 2 .
X.14 6 . -2 2 . 2 -2 . . . . . -2 .
|