Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $105$ | |
| Group : | $C_2^5.C_6$ | |
| CHM label : | $1/2[2^{6}]6$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,2,4,6,8,10,12,3,5,7,9,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $A_4$, $C_{12}$ 24: $A_4\times C_2$ 48: 12T29 96: $C_2^4:C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$
Low degree siblings
12T99 x 2, 12T105, 16T418 x 2, 24T483 x 2, 24T484 x 2, 24T501 x 2, 24T502 x 4, 24T503 x 2, 24T504 x 2, 24T505 x 2, 24T506 x 2, 24T507 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 6, 7)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 2, 4, 6, 8,10,12, 3, 5, 7, 9,11)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 2, 4, 6, 8,11,12, 3, 5, 7, 9,10)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 4, 8)( 2, 6,10)( 3, 7,11)( 5, 9,12)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 6,10, 3, 7,11)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 6)( 2, 8)( 3, 9)( 4,10, 5,11)( 7,12)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 6)( 2, 8, 3, 9)( 4,10)( 5,11)( 7,12)$ |
| $ 4, 4, 4 $ | $4$ | $4$ | $( 1, 6,12, 7)( 2, 8, 3, 9)( 4,10, 5,11)$ |
| $ 4, 4, 4 $ | $4$ | $4$ | $( 1, 6,12, 7)( 2, 8, 3, 9)( 4,11, 5,10)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 8, 4)( 2,10, 6)( 3,11, 7)( 5,12, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 8, 5,12, 9, 4)( 2,10, 7, 3,11, 6)$ |
| $ 12 $ | $16$ | $12$ | $( 1,10, 9, 7, 5, 3,12,11, 8, 6, 4, 2)$ |
| $ 12 $ | $16$ | $12$ | $( 1,10, 8, 7, 5, 3,12,11, 9, 6, 4, 2)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 191] |
| Character table: |
2 6 5 5 6 5 5 6 2 2 2 2 4 4 4 4 2 2 2 2 6
3 1 . . . . . . 1 1 1 1 . . 1 1 1 1 1 1 1
1a 2a 2b 2c 2d 2e 2f 12a 12b 3a 6a 4a 4b 4c 4d 3b 6b 12c 12d 2g
2P 1a 1a 1a 1a 1a 1a 1a 6a 6a 3b 3b 2c 2c 2g 2g 3a 3a 6b 6b 1a
3P 1a 2a 2b 2c 2d 2e 2f 4c 4d 1a 2g 4b 4a 4d 4c 1a 2g 4c 4d 2g
5P 1a 2a 2b 2c 2d 2e 2f 12c 12d 3b 6b 4a 4b 4c 4d 3a 6a 12a 12b 2g
7P 1a 2a 2b 2c 2d 2e 2f 12b 12a 3a 6a 4b 4a 4d 4c 3b 6b 12d 12c 2g
11P 1a 2a 2b 2c 2d 2e 2f 12d 12c 3b 6b 4b 4a 4d 4c 3a 6a 12b 12a 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1
X.3 1 -1 1 -1 1 -1 1 A -A 1 -1 A -A -A A 1 -1 A -A -1
X.4 1 -1 1 -1 1 -1 1 -A A 1 -1 -A A A -A 1 -1 -A A -1
X.5 1 -1 1 -1 1 -1 1 B -B -/C /C A -A -A A -C C -/B /B -1
X.6 1 -1 1 -1 1 -1 1 -/B /B -C C A -A -A A -/C /C B -B -1
X.7 1 -1 1 -1 1 -1 1 /B -/B -C C -A A A -A -/C /C -B B -1
X.8 1 -1 1 -1 1 -1 1 -B B -/C /C -A A A -A -C C /B -/B -1
X.9 1 1 1 1 1 1 1 C C -/C -/C -1 -1 -1 -1 -C -C /C /C 1
X.10 1 1 1 1 1 1 1 /C /C -C -C -1 -1 -1 -1 -/C -/C C C 1
X.11 1 1 1 1 1 1 1 -/C -/C -C -C 1 1 1 1 -/C -/C -C -C 1
X.12 1 1 1 1 1 1 1 -C -C -/C -/C 1 1 1 1 -C -C -/C -/C 1
X.13 3 -1 -1 3 -1 -1 3 . . . . -1 -1 3 3 . . . . 3
X.14 3 -1 -1 3 -1 -1 3 . . . . 1 1 -3 -3 . . . . 3
X.15 3 1 -1 -3 -1 1 3 . . . . A -A D -D . . . . -3
X.16 3 1 -1 -3 -1 1 3 . . . . -A A -D D . . . . -3
X.17 6 -2 -2 2 2 2 -2 . . . . . . . . . . . . -6
X.18 6 -2 2 -2 -2 2 -2 . . . . . . . . . . . . 6
X.19 6 2 -2 -2 2 -2 -2 . . . . . . . . . . . . 6
X.20 6 2 2 2 -2 -2 -2 . . . . . . . . . . . . -6
A = -E(4)
= -Sqrt(-1) = -i
B = -E(12)^7
C = -E(3)
= (1-Sqrt(-3))/2 = -b3
D = -3*E(4)
= -3*Sqrt(-1) = -3i
|