Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $100$ | |
| Group : | $C_2\times C_2^2:S_4$ | |
| CHM label : | $[(1/2.2^{2})^{3}]S_{4}(6d)_{2}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (2,3)(4,8)(5,9)(6,11)(7,10), (1,7,11)(2,4,8)(3,5,9)(6,10,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ x 3 48: $S_4\times C_2$ x 3 96: $V_4^2:S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T100 x 2, 12T101 x 6, 12T103 x 6, 12T106, 16T429, 24T432 x 3, 24T485 x 3, 24T486 x 6, 24T487 x 6, 24T488 x 3, 24T489 x 3, 24T490 x 3, 24T491 x 2, 24T492 x 6, 24T493 x 6, 24T508 x 3, 24T509 x 6, 24T510, 24T511, 32T2212 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 6)( 5, 7)( 8,11)( 9,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 7)( 5, 6)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 4, 8)( 5, 9)( 6,11)( 7,10)$ |
| $ 4, 4, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3)( 4, 8, 5, 9)( 6,11, 7,10)$ |
| $ 4, 4, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3)( 4,10, 5,11)( 6, 9, 7, 8)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 4,10)( 5,11)( 6, 9)( 7, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,12)( 4, 5)( 6, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4, 5)( 6, 7)( 8,11)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,12)( 4, 6)( 5, 7)( 8, 9)(10,11)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2,12, 3)( 4, 8, 6,11)( 5, 9, 7,10)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2,12, 3)( 4, 8, 7,10)( 5, 9, 6,11)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2,12, 3)( 4,10, 7, 8)( 5,11, 6, 9)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2,12, 3)( 4,10, 6, 9)( 5,11, 7, 8)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 4, 8)( 2, 7,11)( 3, 6,10)( 5, 9,12)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 7,11, 3, 6,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1538] |
| Character table: |
2 6 6 6 5 6 6 4 4 4 4 6 5 6 4 4 4 4 1 1 6
3 1 . . . . . . . . . . . . . . . . 1 1 1
1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 2h 2i 2j 4c 4d 4e 4f 3a 6a 2k
2P 1a 1a 1a 1a 1a 1a 1a 2b 2b 1a 1a 1a 1a 2h 2j 2j 2h 3a 3a 1a
3P 1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 2h 2i 2j 4c 4d 4e 4f 1a 2k 2k
5P 1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 2h 2i 2j 4c 4d 4e 4f 3a 6a 2k
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1
X.3 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1
X.4 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1
X.5 2 -2 2 2 -2 -2 . . . . 2 -2 2 . . . . -1 1 -2
X.6 2 2 2 2 2 2 . . . . 2 2 2 . . . . -1 -1 2
X.7 3 -3 3 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 . . -3
X.8 3 -3 3 -1 1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 . . -3
X.9 3 -1 -1 -1 3 -1 -1 1 1 -1 -1 -1 3 1 -1 -1 1 . . 3
X.10 3 -1 -1 -1 3 -1 1 -1 -1 1 -1 -1 3 -1 1 1 -1 . . 3
X.11 3 1 -1 -1 -3 1 -1 -1 1 1 -1 1 3 -1 -1 1 1 . . -3
X.12 3 1 -1 -1 -3 1 1 1 -1 -1 -1 1 3 1 1 -1 -1 . . -3
X.13 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 . . 3
X.14 3 3 3 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 . . 3
X.15 3 -1 -1 -1 -1 3 -1 1 1 -1 3 -1 -1 -1 1 1 -1 . . 3
X.16 3 -1 -1 -1 -1 3 1 -1 -1 1 3 -1 -1 1 -1 -1 1 . . 3
X.17 3 1 -1 -1 1 -3 -1 -1 1 1 3 1 -1 1 1 -1 -1 . . -3
X.18 3 1 -1 -1 1 -3 1 1 -1 -1 3 1 -1 -1 -1 1 1 . . -3
X.19 6 2 -2 2 2 2 . . . . -2 -2 -2 . . . . . . -6
X.20 6 -2 -2 2 -2 -2 . . . . -2 2 -2 . . . . . . 6
|