Properties

Label 11T7
Order \(19958400\)
n \(11\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $A_{11}$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $11$
Transitive number $t$ :  $7$
Group :  $A_{11}$
CHM label :  $A11$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3), (3,4,5,6,7,8,9,10,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1 $ $17325$ $2$ $( 1,11)( 3, 9)( 4,10)( 7, 8)$
$ 4, 4, 1, 1, 1 $ $207900$ $4$ $( 1,10,11, 4)( 3, 7, 9, 8)$
$ 8, 2, 1 $ $2494800$ $8$ $( 1, 8,10, 3,11, 7, 4, 9)( 2, 6)$
$ 3, 3, 3, 1, 1 $ $123200$ $3$ $( 1, 7, 3)( 2, 5,11)( 8,10, 9)$
$ 6, 3, 2 $ $1108800$ $6$ $( 1, 3, 7)( 2,10, 5, 9,11, 8)( 4, 6)$
$ 3, 3, 1, 1, 1, 1, 1 $ $18480$ $3$ $( 2, 5,11)( 8,10, 9)$
$ 6, 2, 1, 1, 1 $ $554400$ $6$ $( 2, 8, 5,10,11, 9)( 4, 6)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1 $ $990$ $2$ $( 1, 3)( 4, 6)$
$ 5, 1, 1, 1, 1, 1, 1 $ $11088$ $5$ $( 2,10, 5,11, 7)$
$ 4, 2, 1, 1, 1, 1, 1 $ $41580$ $4$ $( 1, 6, 3, 4)( 8, 9)$
$ 5, 2, 2, 1, 1 $ $498960$ $10$ $( 1, 3)( 2,11,10, 7, 5)( 4, 6)$
$ 5, 4, 2 $ $997920$ $20$ $( 1, 6, 3, 4)( 2, 7,11, 5,10)( 8, 9)$
$ 4, 2, 2, 2, 1 $ $207900$ $4$ $( 1, 7)( 2, 3)( 4, 8, 6,11)( 9,10)$
$ 3, 3, 2, 2, 1 $ $277200$ $6$ $( 1,10, 3)( 2, 7, 9)( 4, 6)( 8,11)$
$ 6, 4, 1 $ $1663200$ $12$ $( 1, 2,10, 7, 3, 9)( 4,11, 6, 8)$
$ 3, 1, 1, 1, 1, 1, 1, 1, 1 $ $330$ $3$ $( 4, 7, 6)$
$ 3, 2, 2, 2, 2 $ $34650$ $6$ $( 1, 3)( 2, 8)( 4, 6, 7)( 5,10)( 9,11)$
$ 3, 2, 2, 1, 1, 1, 1 $ $69300$ $6$ $( 2, 8)( 4, 6, 7)( 5,10)$
$ 4, 3, 2, 1, 1 $ $831600$ $12$ $( 2,10, 8, 5)( 4, 7, 6)( 9,11)$
$ 9, 1, 1 $ $2217600$ $9$ $( 2,10,11, 8, 9, 4, 3, 5, 7)$
$ 11 $ $1814400$ $11$ $( 1,11, 6, 8, 5, 3, 9, 2, 7,10, 4)$
$ 11 $ $1814400$ $11$ $( 1, 4,10, 7, 2, 9, 3, 5, 8, 6,11)$
$ 7, 1, 1, 1, 1 $ $237600$ $7$ $( 2, 8, 9,10, 7, 3, 5)$
$ 7, 3, 1 $ $950400$ $21$ $( 2, 3,10, 8, 5, 7, 9)( 4,11, 6)$
$ 7, 3, 1 $ $950400$ $21$ $( 2, 3,10, 8, 5, 7, 9)( 4, 6,11)$
$ 7, 2, 2 $ $712800$ $14$ $( 1,11)( 2, 9, 3, 4, 5, 8, 6)( 7,10)$
$ 4, 4, 3 $ $415800$ $12$ $( 1, 3,11, 9)( 2, 6, 5)( 4, 7,10, 8)$
$ 5, 3, 3 $ $443520$ $15$ $( 1, 3, 4, 7, 6)( 2, 5,11)( 8, 9,10)$
$ 5, 3, 1, 1, 1 $ $443520$ $15$ $( 1, 6, 7, 4, 3)( 8, 9,10)$
$ 5, 5, 1 $ $798336$ $5$ $( 1, 4, 3, 8, 6)( 2,10, 5,11, 7)$

Group invariants

Order:  $19958400=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.