Group action invariants
| Degree $n$ : | $11$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $F_{11}$ | |
| CHM label : | $F_{110}(11)=11:10$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11), (1,2,4,8,5,10,9,7,3,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 5: $C_5$ 10: $C_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
22T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 10, 1 $ | $11$ | $10$ | $( 2, 3, 5, 9, 6,11,10, 8, 4, 7)$ |
| $ 5, 5, 1 $ | $11$ | $5$ | $( 2, 4,10, 6, 5)( 3, 7, 8,11, 9)$ |
| $ 5, 5, 1 $ | $11$ | $5$ | $( 2, 5, 6,10, 4)( 3, 9,11, 8, 7)$ |
| $ 5, 5, 1 $ | $11$ | $5$ | $( 2, 6, 4, 5,10)( 3,11, 7, 9, 8)$ |
| $ 10, 1 $ | $11$ | $10$ | $( 2, 7, 4, 8,10,11, 6, 9, 5, 3)$ |
| $ 10, 1 $ | $11$ | $10$ | $( 2, 8, 6, 3, 4,11, 5, 7,10, 9)$ |
| $ 10, 1 $ | $11$ | $10$ | $( 2, 9,10, 7, 5,11, 4, 3, 6, 8)$ |
| $ 5, 5, 1 $ | $11$ | $5$ | $( 2,10, 5, 4, 6)( 3, 8, 9, 7,11)$ |
| $ 2, 2, 2, 2, 2, 1 $ | $11$ | $2$ | $( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)$ |
| $ 11 $ | $10$ | $11$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)$ |
Group invariants
| Order: | $110=2 \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [110, 1] |
| Character table: |
2 1 1 1 1 1 1 1 1 1 1 .
5 1 1 1 1 1 1 1 1 1 1 .
11 1 . . . . . . . . . 1
1a 10a 5a 5b 5c 10b 10c 10d 5d 2a 11a
2P 1a 5b 5d 5c 5a 5a 5c 5d 5b 1a 11a
3P 1a 10d 5c 5d 5b 10c 10a 10b 5a 2a 11a
5P 1a 2a 1a 1a 1a 2a 2a 2a 1a 2a 11a
7P 1a 10c 5d 5c 5a 10d 10b 10a 5b 2a 11a
11P 1a 10a 5a 5b 5c 10b 10c 10d 5d 2a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 -1 -1 -1 1 -1 1
X.3 1 A -/B -B -/A /A B /B -A -1 1
X.4 1 B -A -/A -/B /B /A A -B -1 1
X.5 1 /B -/A -A -B B A /A -/B -1 1
X.6 1 /A -B -/B -A A /B B -/A -1 1
X.7 1 -/A -B -/B -A -A -/B -B -/A 1 1
X.8 1 -/B -/A -A -B -B -A -/A -/B 1 1
X.9 1 -B -A -/A -/B -/B -/A -A -B 1 1
X.10 1 -A -/B -B -/A -/A -B -/B -A 1 1
X.11 10 . . . . . . . . . -1
A = -E(5)
B = -E(5)^2
|