Group action invariants
| Degree $n$ : | $11$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{11}$ | |
| CHM label : | $D(11)=11:2$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11), (1,10)(2,9)(3,8)(4,7)(5,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
22T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1 $ | $11$ | $2$ | $( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)$ |
| $ 11 $ | $2$ | $11$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)$ |
| $ 11 $ | $2$ | $11$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)$ |
| $ 11 $ | $2$ | $11$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)$ |
| $ 11 $ | $2$ | $11$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)$ |
| $ 11 $ | $2$ | $11$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)$ |
Group invariants
| Order: | $22=2 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [22, 1] |
| Character table: |
2 1 1 . . . . .
11 1 . 1 1 1 1 1
1a 2a 11a 11b 11c 11d 11e
2P 1a 1a 11b 11d 11e 11c 11a
3P 1a 2a 11c 11e 11b 11a 11d
5P 1a 2a 11e 11a 11d 11b 11c
7P 1a 2a 11d 11c 11a 11e 11b
11P 1a 2a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1 1
X.3 2 . A D E B C
X.4 2 . B E A C D
X.5 2 . C A B D E
X.6 2 . D B C E A
X.7 2 . E C D A B
A = E(11)^4+E(11)^7
B = E(11)^5+E(11)^6
C = E(11)^2+E(11)^9
D = E(11)^3+E(11)^8
E = E(11)+E(11)^10
|