Group action invariants
| Degree $n$ : | $11$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_{11}$ | |
| CHM label : | $C(11)=11$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $1$ | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11) | |
| $|\Aut(F/K)|$: | $11$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 11 $ | $1$ | $11$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)$ |
| $ 11 $ | $1$ | $11$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)$ |
| $ 11 $ | $1$ | $11$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)$ |
| $ 11 $ | $1$ | $11$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Group invariants
| Order: | $11$ (is prime) | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [11, 1] |
| Character table: |
11 1 1 1 1 1 1 1 1 1 1 1
1a 11a 11b 11c 11d 11e 11f 11g 11h 11i 11j
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A B C D E /E /D /C /B /A
X.3 1 B D /E /C /A A C E /D /B
X.4 1 C /E /B A D /D /A B E /C
X.5 1 D /C A E /B B /E /A C /D
X.6 1 E /A D /B C /C B /D A /E
X.7 1 /E A /D B /C C /B D /A E
X.8 1 /D C /A /E B /B E A /C D
X.9 1 /C E B /A /D D A /B /E C
X.10 1 /B /D E C A /A /C /E D B
X.11 1 /A /B /C /D /E E D C B A
A = E(11)
B = E(11)^2
C = E(11)^3
D = E(11)^4
E = E(11)^5
|