Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $44$ | |
| Group : | $A_{10}$ | |
| CHM label : | $A10$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,4,5,6,7,8,9,10), (1,2,3) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
45T1982Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1 $ | $4725$ | $2$ | $( 2, 3)( 4, 5)( 6, 9)( 7,10)$ |
| $ 3, 3, 1, 1, 1, 1 $ | $8400$ | $3$ | $( 2, 5,10)( 3, 4, 7)$ |
| $ 6, 2, 1, 1 $ | $151200$ | $6$ | $( 2, 7, 5, 3,10, 4)( 6, 9)$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1 $ | $240$ | $3$ | $( 2, 4,10)$ |
| $ 7, 1, 1, 1 $ | $86400$ | $7$ | $( 1, 9, 6, 3, 5, 7, 8)$ |
| $ 7, 3 $ | $86400$ | $21$ | $( 1, 7, 3, 9, 8, 5, 6)( 2, 4,10)$ |
| $ 7, 3 $ | $86400$ | $21$ | $( 1, 7, 3, 9, 8, 5, 6)( 2,10, 4)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $630$ | $2$ | $( 2, 4)( 3, 5)$ |
| $ 4, 2, 1, 1, 1, 1 $ | $18900$ | $4$ | $( 2, 3, 4, 5)( 7,10)$ |
| $ 3, 2, 2, 1, 1, 1 $ | $25200$ | $6$ | $( 2, 4)( 3, 5)( 6, 8, 9)$ |
| $ 4, 3, 2, 1 $ | $151200$ | $12$ | $( 2, 5, 4, 3)( 6, 9, 8)( 7,10)$ |
| $ 3, 3, 3, 1 $ | $22400$ | $3$ | $( 1, 6, 2)( 3, 4, 9)( 5,10, 7)$ |
| $ 9, 1 $ | $201600$ | $9$ | $( 1, 7, 3, 6, 5, 4, 2,10, 9)$ |
| $ 4, 2, 2, 2 $ | $18900$ | $4$ | $( 1, 8)( 2, 7, 3,10)( 4, 9)( 5, 6)$ |
| $ 3, 3, 2, 2 $ | $25200$ | $6$ | $( 1, 6, 9)( 2, 3)( 4, 8, 5)( 7,10)$ |
| $ 4, 4, 1, 1 $ | $56700$ | $4$ | $( 1, 8, 9,10)( 2, 7, 5, 4)$ |
| $ 8, 2 $ | $226800$ | $8$ | $( 1, 4,10, 5, 9, 7, 8, 2)( 3, 6)$ |
| $ 9, 1 $ | $201600$ | $9$ | $( 1, 8, 3, 2,10, 9, 4, 6, 7)$ |
| $ 5, 1, 1, 1, 1, 1 $ | $6048$ | $5$ | $( 1, 4, 8, 7, 9)$ |
| $ 5, 3, 1, 1 $ | $120960$ | $15$ | $( 1, 8, 9, 4, 7)( 2, 3, 5)$ |
| $ 5, 5 $ | $72576$ | $5$ | $( 1, 8, 9, 4, 7)( 2,10, 3, 5, 6)$ |
| $ 5, 2, 2, 1 $ | $90720$ | $10$ | $( 1, 9, 5, 3, 2)( 4,10)( 6, 8)$ |
| $ 6, 4 $ | $151200$ | $12$ | $( 1, 7, 6, 4)( 2, 5,10, 8, 3, 9)$ |
Group invariants
| Order: | $1814400=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |