Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $37$ | |
| Group : | $(C_2^4:A_5) : C_2$ | |
| CHM label : | $[2^{4}]S(5)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,10)(5,7), (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $S_5$
Low degree siblings
10T38, 16T1328, 20T218, 20T219, 20T222, 20T223, 20T226, 30T329, 30T332, 30T333, 30T341, 32T97736, 40T1581, 40T1582, 40T1583, 40T1584, 40T1587, 40T1588, 40T1595, 40T1596, 40T1658, 40T1659, 40T1676, 40T1677, 40T1678Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 1, 6)( 2, 7)( 4, 9)( 5,10)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 4,10)( 5, 9)$ |
| $ 4, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 2, 7)( 4, 5, 9,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 1, 6)( 2, 7)( 4,10)( 5, 9)$ |
| $ 4, 2, 2, 2 $ | $20$ | $4$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 5, 9,10)$ |
| $ 3, 3, 1, 1, 1, 1 $ | $80$ | $3$ | $( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 2, 1, 1 $ | $160$ | $6$ | $( 2, 7)( 3, 9,10, 8, 4, 5)$ |
| $ 3, 3, 2, 2 $ | $80$ | $6$ | $( 1, 6)( 2, 7)( 3, 9, 5)( 4,10, 8)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 2, 8)( 3, 7)( 4,10)( 5, 9)$ |
| $ 4, 4, 1, 1 $ | $60$ | $4$ | $( 2, 8, 7, 3)( 4, 5, 9,10)$ |
| $ 4, 2, 2, 2 $ | $120$ | $4$ | $( 1, 6)( 2, 8)( 3, 7)( 4, 5, 9,10)$ |
| $ 4, 4, 1, 1 $ | $240$ | $4$ | $( 2, 8, 4,10)( 3, 9, 5, 7)$ |
| $ 8, 2 $ | $240$ | $8$ | $( 1, 6)( 2, 8, 4, 5, 7, 3, 9,10)$ |
| $ 3, 3, 2, 2 $ | $160$ | $6$ | $( 1, 7)( 2, 6)( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 4 $ | $160$ | $12$ | $( 1, 2, 6, 7)( 3, 9,10, 8, 4, 5)$ |
| $ 5, 5 $ | $384$ | $5$ | $( 1, 7, 3, 9, 5)( 2, 8, 4,10, 6)$ |
Group invariants
| Order: | $1920=2^{7} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 7 6 7 5 5 5 5 3 2 3 5 5 4 3 3 2 2 .
3 1 1 1 1 . . 1 1 1 1 . . . . . 1 1 .
5 1 . . . . . . . . . . . . . . . . 1
1a 2a 2b 2c 4a 2d 4b 3a 6a 6b 2e 4c 4d 4e 8a 6c 12a 5a
2P 1a 1a 1a 1a 2a 1a 2a 3a 3a 3a 1a 2b 2a 2e 4c 3a 6b 5a
3P 1a 2a 2b 2c 4a 2d 4b 1a 2b 2a 2e 4c 4d 4e 8a 2c 4b 5a
5P 1a 2a 2b 2c 4a 2d 4b 3a 6a 6b 2e 4c 4d 4e 8a 6c 12a 1a
7P 1a 2a 2b 2c 4a 2d 4b 3a 6a 6b 2e 4c 4d 4e 8a 6c 12a 5a
11P 1a 2a 2b 2c 4a 2d 4b 3a 6a 6b 2e 4c 4d 4e 8a 6c 12a 5a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1
X.3 4 4 4 -2 -2 -2 -2 1 1 1 . . . . . 1 1 -1
X.4 4 4 4 2 2 2 2 1 1 1 . . . . . -1 -1 -1
X.5 5 5 5 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 .
X.6 5 5 5 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 .
X.7 5 1 -3 3 1 -1 -3 2 . -2 1 1 -1 1 -1 . . .
X.8 5 1 -3 -3 -1 1 3 2 . -2 1 1 -1 -1 1 . . .
X.9 6 6 6 . . . . . . . -2 -2 -2 . . . . 1
X.10 10 -2 2 -4 2 . -2 1 -1 1 2 -2 . . . -1 1 .
X.11 10 -2 2 -2 . 2 -4 1 -1 1 -2 2 . . . 1 -1 .
X.12 10 -2 2 4 -2 . 2 1 -1 1 2 -2 . . . 1 -1 .
X.13 10 -2 2 2 . -2 4 1 -1 1 -2 2 . . . -1 1 .
X.14 10 2 -6 . . . . -2 . 2 2 2 -2 . . . . .
X.15 15 3 -9 -3 -1 1 3 . . . -1 -1 1 1 -1 . . .
X.16 15 3 -9 3 1 -1 -3 . . . -1 -1 1 -1 1 . . .
X.17 20 -4 4 -2 2 -2 2 -1 1 -1 . . . . . 1 -1 .
X.18 20 -4 4 2 -2 2 -2 -1 1 -1 . . . . . -1 1 .
|