Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $36$ | |
| Group : | $C_2 \wr A_5$ | |
| CHM label : | $[2^{5}]A(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (5,10), (2,4,10)(5,7,9), (1,3,5,7,9)(2,4,6,8,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 60: $A_5$ 120: $A_5\times C_2$ 960: $C_2^4 : A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $A_5$
Low degree siblings
20T224, 20T225, 20T230, 30T344, 30T354, 32T97741, 40T1576, 40T1578, 40T1585, 40T1586, 40T1597, 40T1598, 40T1644Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,10)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 7)( 5,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 7)( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 1, 6)( 2, 7)( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 1, 2)( 3, 4)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 2)( 3, 4)( 5,10)( 6, 7)( 8, 9)$ |
| $ 4, 2, 2, 1, 1 $ | $120$ | $4$ | $( 1, 7, 6, 2)( 3, 4)( 8, 9)$ |
| $ 4, 2, 2, 2 $ | $120$ | $4$ | $( 1, 7, 6, 2)( 3, 4)( 5,10)( 8, 9)$ |
| $ 4, 4, 1, 1 $ | $60$ | $4$ | $( 1, 7, 6, 2)( 3, 9, 8, 4)$ |
| $ 4, 4, 2 $ | $60$ | $4$ | $( 1, 7, 6, 2)( 3, 9, 8, 4)( 5,10)$ |
| $ 3, 3, 1, 1, 1, 1 $ | $80$ | $3$ | $( 1, 2, 3)( 6, 7, 8)$ |
| $ 3, 3, 2, 1, 1 $ | $80$ | $6$ | $( 1, 2, 3)( 5,10)( 6, 7, 8)$ |
| $ 6, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1, 7, 8, 6, 2, 3)$ |
| $ 6, 2, 1, 1 $ | $80$ | $6$ | $( 1, 7, 8, 6, 2, 3)( 5,10)$ |
| $ 3, 3, 2, 1, 1 $ | $80$ | $6$ | $( 1, 2, 3)( 4, 9)( 6, 7, 8)$ |
| $ 3, 3, 2, 2 $ | $80$ | $6$ | $( 1, 2, 3)( 4, 9)( 5,10)( 6, 7, 8)$ |
| $ 6, 2, 1, 1 $ | $80$ | $6$ | $( 1, 7, 8, 6, 2, 3)( 4, 9)$ |
| $ 6, 2, 2 $ | $80$ | $6$ | $( 1, 7, 8, 6, 2, 3)( 4, 9)( 5,10)$ |
| $ 5, 5 $ | $192$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
| $ 10 $ | $192$ | $10$ | $( 1, 2, 3, 4,10, 6, 7, 8, 9, 5)$ |
| $ 5, 5 $ | $192$ | $5$ | $( 1, 2, 3, 5, 4)( 6, 7, 8,10, 9)$ |
| $ 10 $ | $192$ | $10$ | $( 1, 2, 3,10, 9, 6, 7, 8, 5, 4)$ |
Group invariants
| Order: | $1920=2^{7} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |