Show commands:
Magma
magma: G := TransitiveGroup(10, 35);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(A_6 : C_2) : C_2$ | ||
CHM label: | $L(10).2^{2}=P|L(2,9)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,7,3,4,2,5,6,8), (3,6)(4,7)(5,8) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
12T220, 20T201, 20T204, 20T208, 24T2960, 30T264, 36T2341, 40T1198, 40T1199, 40T1201, 45T187Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 1, 5)( 2, 9)( 4, 6)( 8,10)$ |
$ 4, 4, 1, 1 $ | $180$ | $4$ | $( 1, 4, 5, 6)( 2,10, 9, 8)$ |
$ 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 9)( 2, 5)( 3, 7)( 4, 8)( 6,10)$ |
$ 4, 4, 2 $ | $90$ | $4$ | $( 1,10, 5, 8)( 2, 4, 9, 6)( 3, 7)$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $30$ | $2$ | $( 1, 5)( 3, 7)( 8,10)$ |
$ 3, 3, 3, 1 $ | $80$ | $3$ | $( 1, 3, 8)( 2, 4, 6)( 5, 7,10)$ |
$ 6, 3, 1 $ | $240$ | $6$ | $( 1, 2, 8, 6, 3, 4)( 5, 7,10)$ |
$ 4, 4, 1, 1 $ | $90$ | $4$ | $( 1, 5, 7, 3)( 2, 8, 6,10)$ |
$ 8, 1, 1 $ | $180$ | $8$ | $( 1, 6, 3, 8, 7, 2, 5,10)$ |
$ 8, 2 $ | $180$ | $8$ | $( 1, 2, 5, 8, 7, 6, 3,10)( 4, 9)$ |
$ 5, 5 $ | $144$ | $5$ | $( 1, 5, 8, 9, 7)( 2, 6, 4, 3,10)$ |
$ 10 $ | $144$ | $10$ | $( 1, 4, 9, 2, 5, 3, 7, 6, 8,10)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $1440=2^{5} \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 1440.5841 | magma: IdentifyGroup(G);
|
Character table: |
2 5 1 4 1 3 1 1 5 4 3 4 3 3 3 2 2 1 1 . . . . . . . . . 5 1 . . . 1 1 1 . . . . . . 1a 3a 2a 6a 2b 5a 10a 2c 4a 8a 4b 4c 8b 2P 1a 3a 1a 3a 1a 5a 5a 1a 2c 4a 2c 2c 4a 3P 1a 1a 2a 2a 2b 5a 10a 2c 4a 8a 4b 4c 8b 5P 1a 3a 2a 6a 2b 1a 2b 2c 4a 8a 4b 4c 8b 7P 1a 3a 2a 6a 2b 5a 10a 2c 4a 8a 4b 4c 8b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 X.3 1 1 -1 -1 1 1 1 1 1 1 -1 -1 -1 X.4 1 1 1 1 -1 1 -1 1 1 -1 1 -1 -1 X.5 9 . -3 . -1 -1 -1 1 1 1 1 -1 1 X.6 9 . -3 . 1 -1 1 1 1 -1 1 1 -1 X.7 9 . 3 . -1 -1 -1 1 1 1 -1 1 -1 X.8 9 . 3 . 1 -1 1 1 1 -1 -1 -1 1 X.9 10 1 2 -1 . . . 2 -2 . 2 . . X.10 10 1 -2 1 . . . 2 -2 . -2 . . X.11 16 -2 . . -4 1 1 . . . . . . X.12 16 -2 . . 4 1 -1 . . . . . . X.13 20 2 . . . . . -4 . . . . . |
magma: CharacterTable(G);