Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $35$ | |
| Group : | $(A_6 : C_2) : C_2$ | |
| CHM label : | $L(10).2^{2}=P|L(2,9)$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,7,3,4,2,5,6,8), (3,6)(4,7)(5,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
12T220, 20T201, 20T204, 20T208, 24T2960, 30T264, 36T2341, 40T1198, 40T1199, 40T1201, 45T187Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1 $ | $80$ | $3$ | $( 1, 5, 7)( 2, 4, 8)( 6, 9,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1 $ | $30$ | $2$ | $( 1, 6)( 5, 9)( 7,10)$ |
| $ 6, 3, 1 $ | $240$ | $6$ | $( 1,10, 5, 6, 7, 9)( 2, 8, 4)$ |
| $ 5, 5 $ | $144$ | $5$ | $( 1, 8, 7, 5, 9)( 2, 4,10, 6, 3)$ |
| $ 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 3)( 2, 8)( 4, 7)( 5,10)( 6, 9)$ |
| $ 10 $ | $144$ | $10$ | $( 1, 4, 9, 2, 5, 3, 7, 6, 8,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 1, 7)( 2, 6)( 3, 5)( 8,10)$ |
| $ 4, 4, 1, 1 $ | $90$ | $4$ | $( 1, 5, 7, 3)( 2, 8, 6,10)$ |
| $ 8, 2 $ | $180$ | $8$ | $( 1, 6, 5,10, 7, 2, 3, 8)( 4, 9)$ |
| $ 4, 4, 1, 1 $ | $180$ | $4$ | $( 3, 5, 6, 4)( 7, 9, 8,10)$ |
| $ 4, 4, 2 $ | $90$ | $4$ | $( 1, 4, 8, 6)( 2, 9, 3, 7)( 5,10)$ |
| $ 8, 1, 1 $ | $180$ | $8$ | $( 1, 7, 6, 8, 5,10, 9, 3)$ |
Group invariants
| Order: | $1440=2^{5} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1440, 5841] |
| Character table: |
2 5 5 4 3 3 3 3 4 1 1 4 1 1
3 2 . . . . . . 1 2 1 . . .
5 1 . . . 1 . . . . . . 1 1
1a 2a 4a 8a 2b 4b 8b 2c 3a 6a 4c 5a 10a
2P 1a 1a 2a 4a 1a 2a 4a 1a 3a 3a 2a 5a 5a
3P 1a 2a 4a 8a 2b 4b 8b 2c 1a 2c 4c 5a 10a
5P 1a 2a 4a 8a 2b 4b 8b 2c 3a 6a 4c 1a 2b
7P 1a 2a 4a 8a 2b 4b 8b 2c 3a 6a 4c 5a 10a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 -1
X.3 1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1
X.4 1 1 1 1 1 -1 -1 -1 1 -1 -1 1 1
X.5 9 1 1 -1 1 -1 1 3 . . -1 -1 1
X.6 9 1 1 -1 1 1 -1 -3 . . 1 -1 1
X.7 9 1 1 1 -1 -1 1 -3 . . 1 -1 -1
X.8 9 1 1 1 -1 1 -1 3 . . -1 -1 -1
X.9 10 2 -2 . . . . 2 1 -1 2 . .
X.10 10 2 -2 . . . . -2 1 1 -2 . .
X.11 16 . . . -4 . . . -2 . . 1 1
X.12 16 . . . 4 . . . -2 . . 1 -1
X.13 20 -4 . . . . . . 2 . . . .
|