Properties

Label 10T35
Order \(1440\)
n \(10\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $(A_6 : C_2) : C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $10$
Transitive number $t$ :  $35$
Group :  $(A_6 : C_2) : C_2$
CHM label :  $L(10).2^{2}=P|L(2,9)$
Parity:  $-1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,7,3,4,2,5,6,8), (3,6)(4,7)(5,8)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 5: None

Low degree siblings

12T220, 20T201, 20T204, 20T208, 24T2960, 30T264, 36T2341, 40T1198, 40T1199, 40T1201, 45T187

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 3, 1 $ $80$ $3$ $( 1, 5, 7)( 2, 4, 8)( 6, 9,10)$
$ 2, 2, 2, 1, 1, 1, 1 $ $30$ $2$ $( 1, 6)( 5, 9)( 7,10)$
$ 6, 3, 1 $ $240$ $6$ $( 1,10, 5, 6, 7, 9)( 2, 8, 4)$
$ 5, 5 $ $144$ $5$ $( 1, 8, 7, 5, 9)( 2, 4,10, 6, 3)$
$ 2, 2, 2, 2, 2 $ $36$ $2$ $( 1, 3)( 2, 8)( 4, 7)( 5,10)( 6, 9)$
$ 10 $ $144$ $10$ $( 1, 4, 9, 2, 5, 3, 7, 6, 8,10)$
$ 2, 2, 2, 2, 1, 1 $ $45$ $2$ $( 1, 7)( 2, 6)( 3, 5)( 8,10)$
$ 4, 4, 1, 1 $ $90$ $4$ $( 1, 5, 7, 3)( 2, 8, 6,10)$
$ 8, 2 $ $180$ $8$ $( 1, 6, 5,10, 7, 2, 3, 8)( 4, 9)$
$ 4, 4, 1, 1 $ $180$ $4$ $( 3, 5, 6, 4)( 7, 9, 8,10)$
$ 4, 4, 2 $ $90$ $4$ $( 1, 4, 8, 6)( 2, 9, 3, 7)( 5,10)$
$ 8, 1, 1 $ $180$ $8$ $( 1, 7, 6, 8, 5,10, 9, 3)$

Group invariants

Order:  $1440=2^{5} \cdot 3^{2} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  [1440, 5841]
Character table:   
      2  5  5  4  3  3  3  3  4  1  1  4  1   1
      3  2  .  .  .  .  .  .  1  2  1  .  .   .
      5  1  .  .  .  1  .  .  .  .  .  .  1   1

        1a 2a 4a 8a 2b 4b 8b 2c 3a 6a 4c 5a 10a
     2P 1a 1a 2a 4a 1a 2a 4a 1a 3a 3a 2a 5a  5a
     3P 1a 2a 4a 8a 2b 4b 8b 2c 1a 2c 4c 5a 10a
     5P 1a 2a 4a 8a 2b 4b 8b 2c 3a 6a 4c 1a  2b
     7P 1a 2a 4a 8a 2b 4b 8b 2c 3a 6a 4c 5a 10a

X.1      1  1  1  1  1  1  1  1  1  1  1  1   1
X.2      1  1  1 -1 -1 -1 -1  1  1  1  1  1  -1
X.3      1  1  1 -1 -1  1  1 -1  1 -1 -1  1  -1
X.4      1  1  1  1  1 -1 -1 -1  1 -1 -1  1   1
X.5      9  1  1 -1  1 -1  1  3  .  . -1 -1   1
X.6      9  1  1 -1  1  1 -1 -3  .  .  1 -1   1
X.7      9  1  1  1 -1 -1  1 -3  .  .  1 -1  -1
X.8      9  1  1  1 -1  1 -1  3  .  . -1 -1  -1
X.9     10  2 -2  .  .  .  .  2  1 -1  2  .   .
X.10    10  2 -2  .  .  .  . -2  1  1 -2  .   .
X.11    16  .  .  . -4  .  .  . -2  .  .  1   1
X.12    16  .  .  .  4  .  .  . -2  .  .  1  -1
X.13    20 -4  .  .  .  .  .  .  2  .  .  .   .